754
Views
39
CrossRef citations to date
0
Altmetric
Articles

Meshless algorithm for soft tissue cutting in surgical simulation

, , , &
Pages 800-811 | Received 22 Dec 2011, Accepted 26 Jul 2012, Published online: 14 Sep 2012

REFERENCES

  • ABAQUS. 2009. ABAQUS theory manual version 6.9. Providence, RI: Dassault Systèmes Simulia Corp.
  • AllardJ, CotinS, FaureF, BensoussanP-J, PoyerF, DuriezC, DelignetteH, GrisoniL. 2007. SOFA – an open source framework for medical simulation. Proceedings of Medicine Meets Virtual Reality (MMVR 15); Long Beach, CA, USA. p. 1–6.
  • AllardJ, CourtecuisseH, FaureF. 2012. Implicit FEM solver on GPU for interactive deformation simulation. In: Wen-meiWH, editor. GPU computing Gems Jade edition. Boston: Morgan Kaufmann. p. 281–294. Chapter 21. ISBN 978-0-12-385963-1.
  • Basdogan, C., Ho, C.H., Srinivasan, M.A., 1999. Simulation of tissue cutting and bleeding for laparoscopic surgery using auxiliary surfaces. Studies in Health Technology and Informatics62:38–44.
  • BatheK-J. 1996. Finite element procedures. New Jersey: Prentice-Hall.
  • BelytschkoT, KrongauzY, OrganD, FlamingM, KryslP. 1996. Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng. 139:3–47.
  • BelytschkoT, LuYY, GuL. 1994. Element-free Galerkin methods. Int J Numer Methods Eng. 37:229–256.
  • BelytschkoT, OrganD, GerlachC. 2000. Element-free Galerkin methods for dynamic fracture in concrete. Comput Methods Appl Mech Eng. 187:385–399.
  • BelytschkoT, TabbaraM. 1996. Dynamic fracture using element-free Galerkin methods. Int J Numer Methods Eng. 39:923–938.
  • BielserD, GlardonP, TeschnerM, GrossM. 2004. A state machine for real-time cutting of tetrahedral meshes. Graph Models. 66:398–417.
  • BordasS, MoranB. 2006. Enriched finite elements and level sets for damage tolerance assessment of complex structures. Eng Fract Mech. 73(9):1176–1201, 10.1016/j.engfracmech.2006.01.006.
  • BruynsCD, SengerS, MenonA, MontgomeryK, WildermuthS, BoyleR. 2002. A survey of interactive mesh-cutting techniques and a new method for implementing generalized interactive mesh-cutting using virtual tools. J Vis Comput Anim. 13:21–42.
  • BucholzR, MacNeilW, McDurmontL. 2004. The operating room of the future. Clin Neurosurg. 51:228–237.
  • ChoiKS. 2006. Interactive cutting of deformable objects using force propagation approach and digital design analogy. Comput Graph. 30:233–243.
  • CotinS, DelingetteH, AyacheN. 2000. A hybrid elastic model for real-time cutting, deformations, and force feedback for surgery training and simulation. Vis Comput. 16:437–452.
  • CourtecuisseH, JungH, AllardJ, DuriezC. 2010. GPU-based real-time soft tissue deformation with cutting and haptic feedback. Prog Biophys Mol Biol. 103:159–168.
  • DoblaréM, CuetoE, CalvoB, MartínezMA, GarciaJM, CegoninoJ. 2005. On the employ of meshless methods in biomechanics. Comput Methods Appl Mech Eng. 194:801–821.
  • EbeidaMS, PatneyA, OwensJD, MestreauE. 2011. Isotropic conforming refinement of quadrilateral and hexahedral meshes using two-refinement templates. Int J Numer Methods Biomed Eng. 88:974–985.
  • FungYC. 1993. Biomechanics. Mechanical properties of living tissues. 2nd ed. New York: Springer-Verlag.
  • GreenfieldLJ, MulhollandMW. 2010. Greenfield's surgery scientific principles and practice. 5th ed. Philadelphia, PA: Wolters Kluwer Health/Lippincott Williams & Wilkins. ISBN 9781605473550.
  • HortonA, WittekA, JoldesGR, MillerK. 2010. A meshless total Lagrangian explicit dynamics algorithm for surgical simulation. Int J Numer Methods Biomed Eng. 26(8):977–998.
  • JiS, FordJC, GreenwaldRM, BeckwithJG, PaulsenKD, FlashmanLA, McAllisterTW. 2011. Automated subject-specific, hexahedral mesh generation via image registration. Finite Elem Anal Des. 47(10):1178–1185.
  • JoldesGR, WittekA, MillerK. 2009a. Computation of intra-operative brain shift using dynamic relaxation. Comput Methods Appl Mech Eng. 198(41–44):3313–3320. 10.1016/j.cma.2009.06.012.
  • JoldesGR, WittekA, MillerK. 2009b. Suite of finite element algorithms for accurate computation of soft tissue deformation for surgical simulation. Med Image Anal. 13(6):912–919. 10.1016/j.media.2008.12.001.
  • JoldesGR, WittekA, MillerK. 2010a. Real-time nonlinear finite element computations on GPU – application to neurosurgical simulation. Comput Methods Appl Mech Eng. 199(49–52):3305–3314. 10.1016/j.cma.2010.06.037.
  • JoldesGR, WittekA, MillerK. 2010b. Real-time nonlinear finite element computations on gpu – handling of different element types. In: WittekA, NielsenPMF, MillerK, editors. Computational biomechanics for medicine, soft tissues and musculoskeletal system. New York: Springer. p. 73–80. ISBN 978-1-4419-9618-3.
  • JoldesGR, WittekA, MillerK. 2011. An adaptive dynamic relaxation method for solving nonlinear finite element problems. Application to brain shift estimation. Int J Numer Methods Biomed Eng. 27(2):173–185. 10.1002/cnm.1407.
  • JoldesGR, WittekA, MillerK. 2012. Stable time step estimates for mesh-free particle methods. Int J Numer Methods Eng. 91(4): 450–456, 10.1002/nme.4290.
  • LimY, HuJ, ChangC, TardellaN. 2006. Soft tissue deformation and cutting simulation for the multimodal surgery training. Paper presented at: 19th IEEE Symposium on Computer-Based Medical Systems; Salt Lake City, UT.
  • Liu, G.R.2003. Mesh Free Methods: Moving Beyond the Finite Element Method. Boca Raton: CRC Press 0-8493-1238-8.
  • Marechal, L.2009. Advances in Octree-Based All-Hexahedral Mesh Generation: Handling Sharp Features. In: Clark, B.(ed.), Proceedings of the 18th International Meshing Roundtable. Heidelberg: Springer-Verlag, pp. 65–84.
  • MeseureP, ChaillouC. 1997. Deformable body simulation with adaptive subdivision and cuttings. Proceedings of the WSCG'97; February 10–14; Plzen. p. 361–370.
  • MillerK, ChinzeiK, OrssengoG, BednarzP. 2000. Mechanical properties of brain tissue in-vivo: experiment and computer simulation. J Biomech. 33:1369–1376.
  • MillerK, JoldesGR, LanceD, WittekA. 2007. Total Lagrangian explicit dynamics finite element algorithm for computing soft tissue deformation. Commun Numer Methods Eng. 23:121–134.
  • MillerK, WittekA, JoldesGR. 2011. Biomechanical modelling of the brain for computer-assisted neurosurgery. In: Biomechanics of the brain. New York: Springer. p. 111–136.
  • MorAB. 2001. Progressive cutting with minimal new element creation of soft tissue models for interactive surgical simulation [PhD]. Pittsburgh, PA: Carnegie Mellon University.
  • OsherS, SethianJA. 1988. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys. 79:12–49.
  • PanJJ, ChangJ, YangXS, ZhangJJ, QureshiT, HowellR, HickishT. 2011. Graphic and haptic simulation system for virtual laparoscopic rectum surgery. Int J Med Robot Comput Assist Surg. 7:304–317.
  • RabczukT, BelytschkoT. 2007. A three-dimensional large deformation meshfree method for arbitraty evolving cracks. Comput Methods Appl Mech Eng. 196:2777–2799.
  • RabczukT, BordasS, ZiG. 2010. On three-dimensional modelling of crack growth using partition of unity methods. Comput Struct. 88(23–24):1391–1411, 10.1016/j.compstruc.2008.08.010.
  • SchneidersR. 2000. Octree-based hexahedral mesh generation. Int J Comput Geom Appl. 10(4):383–398.
  • StolarskaM, ChoppDL, MoesN, BelytschkoT. 2001. Modelling crack growth by level sets in the extended finite element method. Int J Numer Methods Eng. 51:943–960.
  • TaylorZA, ChengM, OurselinS. 2008. High-speed nonlinear finite element analysis for surgical simulation using graphics processing units. IEEE Trans Med Imaging. 27(5):650–663.
  • UnderwoodP. 1983. Dynamic relaxation. In: Computational methods for transient analysis. Amsterdam: New-Holland. p. 245–265.
  • VigneronLM, VerlyJG, WarfieldSK. 2004. On extended finite element method (XFEM) for modelling of organ deformations associated with surgical cuts. Proceedings of the ISMS 2004, LNCS 2078. Berlin, Heidelberg: Springer-Verlag. p. 311–318.
  • WangP, BeckerAA, JonesIA, GloverAT, BenfordSD, GreenhalghCM, VloeberghsM. 2006. A virtual reality surgery simulation of cutting and retraction in neurosurgery with force-feedback. Comput Methods Programs Biomed. 84:11–18.
  • WangP, BeckerAA, JonesIA, GloverAT, BenfordSD, GreenhalghCM, VloeberghsM. 2007. Virtual reality simulation of surgery with haptic feedback based on the boundary element method. Comput Struct. 85:331–339.
  • WestraWH, HrubanRH, PhelpsTH, HrubanRH, IsacsonC. 2002. Surgical pathology dissection: an illustrated guide, New York: Springer. ISBN 0-387-95559-3.
  • WittekA, Dutta-RoyT, TaylorZA, HortonA, WashioT, ChinzeiK, MillerK. 2008. Subject-specific non-linear biomechanical model of needle insertion into brain. Comput Methods Biomech Biomed Eng. 11(2):135–146.
  • WuW, HengPA. 2005. An improved scheme of an interactive finite element model for 3D soft-tissue cutting and deformation. Vis Comput. 21:707–716.
  • YuanZY, DingYH, ZhangYY, ZhaoJH. 2010. Real-time simulation of tissue cutting with CUDA based on GPGPU. Adv Mater Res. 121–122:154–161.
  • ZhangH. 2004. Simulating tissue dissection for surgical training [MSc]. Burnaby, BC: Simon Fraser University.
  • ZhangY, BajajC. 2006. Adaptive and quality quadrilateral/hexahedral meshing from volumetric data. Comput Methods Appl Mech Eng. 195(9–12):942–960.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.