532
Views
43
CrossRef citations to date
0
Altmetric
Articles

A multi-scale mechanobiological model of in-stent restenosis: deciphering the role of matrix metalloproteinase and extracellular matrix changes

, &
Pages 813-828 | Received 01 Apr 2012, Accepted 26 Jul 2012, Published online: 12 Sep 2012

References

  • AbsoodA, FurutaniA, KawamuraT, GrahamLM. 2004. A comparison of oxidized LDL-induced collagen secretion by graft and aortic SMCs: role of PDGF. Am J Physiol Heart Circ Physiol. 287:H1200–H1206. 10.1152/ajpheart.00228.2004.
  • AdiguzelE, AhmadPJ, FrancoC, BendeckMP. 2009. Collagens in the progression and complications of atherosclerosis. Vasc Med. 14:73–89. 10.1177/1358863X08094801.
  • AguileraCV, GeorgeSJ, JohnsonJL, NewbyAC. 2003. Relationship between type IV collagen degradation, metalloproteinase activity and smooth muscle cell migration and proliferation in cultured human saphenous vein. Cardiovasc Res. 58:679–688. 10.1016/S0008-6363(03)00256-6.
  • AsanumaK, MagidR, JohnsonC, NeremRM, GalisZ. 2003. Uniaxial strain upregulates matrix-degrading enzymes produced by human vascular smooth muscle cells. Am J Physiol Heart Circ Physiol. 284:1778–1784. 10.1152/ajpheart.00494.2002.
  • BabapulleMN, EisenbergMJ. 2002. Coated stents for the prevention of restenosis: Part I. Circulation. 106:2859–2866. 10.1161/01.CIR.0000038982.49640.70.
  • BendeckMP, ZempoN, ClowesAW, GalardyRE. 1994. Smooth muscle cell migration and matrix metalloproteinase expression after arterial injury in the rat. Circ Res. 75:539–545. 10.1161/01.RES.75.3.539.
  • BoyleCJ, LennonAB, EarlyM, KellyDJ, LallyC, PrendergastPJ. 2010. Computational simulation methodologies for mechanobiological modelling: a cell-centred approach to neointima development in stents. Philos Trans R Soc A Math Phys Eng Sci. 368:2919–2935. 10.1098/rsta.2010.0071.
  • BoyleCJ, LennonAB, PrendergastPJ. 2011. In silico prediction of the mechanobiological response of arterial tissue: application to angioplasty and stenting. J Biomech Eng. 133(8), 081001. doi: 10.1115/1.4004492.
  • BriguoriC, SaraisC, PagnottaP. 2002. In-stent restenosis in small coronary arteries: impact of strut thickness. J Am Coll Cardiol. 40:403–409. 10.1016/S0735-1097(02)01989-7.
  • CaiazzoA, EvansD, FalconeJL, HegewaldJ, LorenzE, StahlB, WangD, BernsdorfJ, ChopardB, GunnJ et al., 2009. Towards a complex automata multiscale model of in-stent restenosis. Comput Sci ICCS. 5544:705–714. 10.1007/978-3-642-01970-8_70.
  • ChabrierBE. 1996. Growth factors and vascular wall. Int Angiol. 15:100–103.
  • Colombo A. 2009. The role of altered cyclic strain patterns on proliferation and apoptosis of vascular smooth muscle cells – implications for in-stent restenosis [PhD thesis]. Dublin: Dublin City University. http://doras.dcu.ie/14917/.
  • De BeuleM, MortierP, CarlierSG, VerheggheB, Van ImpeR, VerdonckP. 2008. Realistic finite element-based stent design: the impact of balloon folding. J Biomech. 41(2). 10.1016/j.jbiomech.2007.08.014.
  • DoronzoG, RussoI, MattielloL, TrovatiM, AnfossiG. 2005. Homocysteine rapidly increases matrix metalloproteinase-2 expression and activity in cultured human vascular smooth muscle cells. Thromb Haemost. 94(6):1285–1293. 10.1160/TH05 04 0221.
  • DuraiswamyN, SchoephoersterRT, MorenoMR, MooreJE, Jr. 2007. Stented artery flow patterns and their effects on the artery wall. Annu Rev Fluid Mech. 39:357–382. 10.1146/annurev.fluid.39.050905.110300.
  • EarlyM, LallyC, PrendergastPJ, KellyDJ. 2008. Stresses in peripheral arteries following stent placement: a finite element analysis. Comput Methods Biomech Biomed Eng. 12:25–33. 10.1080/10255840802136135.
  • EvansD, LawfordP, GunnJ, WalkerD, HoseR, SmallwoodR, ChopardB, KrafczykM, BernsdorfJ, HoekstraA. 2008. The application of multiscale modelling to the process of development and prevention of stenosis in a stented coronary artery. Philos Trans R Soc A. 366:3343–3360. 10.1098/rsta.2008.0081.
  • GarasicJM, EdelmanER, SquireJC, SeifertP, WilliamsMS, RogersC. 2000. Stent and artery geometry determine intimal thickening independent of arterial injury. Circulation. 101:812–818. 10.1161/01.CIR.101.7.812.
  • GeorgeSJ, ZaltsmanAB, NewbyAC. 1997. Surgical preparative injury and neointima formation increase MMP-9 expression and MMP-2 activation in human saphenous vein. Cardiovasc Res. 33:447–459. 10.1016/S0008-6363(96)00211-8.
  • GijsenFJH, MigliavaccaF, SchievanoS, SocciL, PetriniL, ThuryA, WentzelJJ, van der SteenAFW, SerruysPWS, DubiniG. 2008. Simulation of stent deployment in a realistic human coronary artery. Biomed Eng Online. 6:7–23. 10.1186/1475-925X-7-23.
  • GroteK, FlachI, LuchtefeldM, AkinE, HollandSM, DrexlerH, SchiefferB. 2003. Mechanical stretch enhances mRNA expression and proenzyme release of matrix metalloproteinase-2 (MMP-2) via NAD(P)H oxidase-derived reactive oxygen species. Circ Res. 92:80e–86e. 10.1161/01.RES.0000077044.60138.7C.
  • GunnJ, ChanKH, ShepherdL, CumberlandDC, CrossmanDC. 2002. Coronary artery stretch versus deep injury in the development of in-stent neointima. Heart. 88:401–405. 10.1136/heart.88.4.401.
  • HahnMS, MchaleMK, WangE, SchmedlenRH, WestJI. 2007. Physiologic pulsatile flow bioreactor conditioning of poly(ethyleneglycol)-based tissue engineered vascular grafts. Ann Biomed Eng. 35(2):190–200. 10.1007/s10439-006-9099-3.
  • HiroseM, KosugiH, NakazatoK, HayashiT. 1999. Restoration to a quiescent and contractile phenotype from a proliferative phenotype of myofibroblasts-like human aortic smooth muscle cells by culture on type IV collagen gels. J Biochem. 125:991–1000.
  • HoffmannR, MintzGS. 2000. Coronary in-stent restenosis – predictors, treatment and prevention. Eur Heart J. 21:1739–1749. 10.1053/euhj.2000.2153.
  • HolzapfelGA, SommerG, GasserCT, RegitnigP. 2005. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modelling. Am J Physiol Heart Circ Physiol. 289:2048–2058. 10.1152/ajpheart.00934.2004.
  • HolzapfelGA, StadlerM, GasserTC. 2005. Changes in the mechanical environment of stenotic arteries during interaction with Stents: computational assessment of parametric stent designs. J Biomech Eng Trans ASME. 127:166–180. 10.1115/1.1835362.
  • HoubballahR, RobaldoA, AlbadawiH, TitusJ, LaMuragliaGM. 2011. A novel model of accelerated intimal hyperplasia in the pig iliac artery. Int J Exp Path. 92:422–427. 10.1111/j.1365-2613.2011.00790.x.
  • IlachinskiA. 2001. Cellular automata: a discrete universe. Singapore: World Scientific.
  • JaffeEA, NachmanRL, BeckerCG, MiinickCR. 1973. Culture of human endothelial cells derived from umbilical veins, identification by morphologic and immunologic criteria. J Clin Invest. 52:2745–2756. 10.1172/JCI107470.
  • JamesTW, WagnerR, WhiteLA, ZwolakRM, BrinkerhoffCE. 1993. Induction of collagenase gene expression by mechanical injury in avascular smooth muscle cell derived cell line. J Cell Physiol. 157:426–437. 10.1002/jcp.1041570227.
  • KastratiA, MehilliJ, DirschingerJ, DotzerF, SchühlenH, NeumannFJ, FleckensteinM, PfafferottC, SeyfarthM, SchömigA. 2001. Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO) trial. Circulation. 103:2816–2821. 10.1016/S0735-1097(03)00119-0.
  • KimYJ, SahRL, DoongJY, GrodzinskyAJ. 1988. Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal Biochem. 174:168–176. 10.1016/0003-2697(88)90532-5.
  • KimYS, GalisZS, RachevA, HanHC, VitoRP. 2009. Matrix metalloproteinase-2 and -9 are associated with high stresses predicted using a nonlinear heterogeneous model of arteries. J Biomech Eng. 131:011009.
  • KleinerDE, TuuttilaA, TryggvasonK, Stetler-StevensonWG. 1993. Stability analysis of latent and active 72-kDa type IV collagenase: the role of tissue inhibitor of metalloproteinases-2 (TIMP-2). Biochemistry. 32:1583–1592. 10.1021/bi00057a024.
  • KornowskiR, HongMK, TioFO, BramwellO, WuH, LeonMB. 1998. In-stent restenosis: contributions of inflammatory responses and arterial injury to neointimal hyperplasia. J Am Coll Cardiol. 31(1):224–230. 10.1016/S0735-1097(97)00450-6.
  • LallyC, DolanF, PrendergastPJ. 2005. Cardiovascular stent design and vessel stresses: a finite element analysis. J Biomech. 38:1574–1581. 10.1016/j.jbiomech.2004.07.022.
  • LeJ, DauchotP, PerrotJL, CambazardF, FreyJ, ChamsonA. 1999. Quantitative zymography of matrix metalloproteinases by measuring hydroxyproline: application to gelatinases A and B. Electrophoresis. 20:2824–2829. 10.1002/(SICI)1522-2683(19991001).
  • LindnerV, ReidyMA. 1991. Proliferation of smooth muscle cells after vascular injury is inhibited by an antibody against basic fibroblast growth factor. Proc Natl Acad Sci USA. 88(9):3739–3743.
  • LoweHC, OesterleSN, KhachigianLM. 2002. Coronary in-stent restenosis: current status and future strategies. J Am Coll Cardiol. 39:183–193. 10.1016/S0735-1097(01)01742-9.
  • MasselotA, ChopardB. 1998. A lattice Boltzmann model for particle transport and deposition. Europhys Lett. 42:259–262.
  • MatsusakiM, AmemoriS, KadowakiK, AkashiM. 2011. Quantitative 3D analysis of nitric oxide diffusion in a 3D artery model using sensor particles. Angew Chem Int Ed. 50(33):7557–7561.
  • MigliavaccaF, PetriniL, ColomboM, AuricchioF, PietrabissaR. 2002. Mechanical behavior of coronary stents investigated through the finite element method. J Biomech. 35:803–811.
  • MigliavaccaF, PetriniL, MassarottiP, SchievanoS, AuricchioF. 2004. Gabriele Dubini. Stainless and shape memory alloy coronary stents: a computational study on the interaction with the vascular wall. Biomech Model Mechanobiol. 2:205–217. 10.1007/s10237-004-0039-6.
  • MitraAK, AgrawalDK. 2005. In stent restenosis: bane of the stent era. J Clin Pathol. 59:232–239. 10.1136/jcp.2005.025742.
  • MonacoS, SparanoV, GioiaM, SpardellaD, Di PierroD, MariniS, ColettaM. 2006. Enzymatic processing of collagen IV by MMP-2 (gelatinase A) affects neutrophil migration and it is modulated by extracatalytic domains. Protein Sci. 15:2805–2815. 10.1110/ps.062430706.
  • MortierP, HolzapfelGA, De BeuleM, Van LooD, TaeymansY, SegersP, VerdonckP, VerheggheBA. 2010. A novel simulation strategy for stent insertion and deployment in curved coronary bifurcations: comparison of three drug-eluting stents. Ann Biomed Eng. 38(1):88–99. 10.1007/s10439-009-9836-5.
  • MortonAC, CrossmanD, GunnJ. 2004. The influence of physical stent parameters upon restenosis. Pathol Biol. 52:196–205. 10.1016/j.patbio.2004.03.013.
  • NewbyAC. 2006. 614. doi: 10.1016/j.cardiores.2005.08.002Matrix metalloproteinases regulate migration, proliferation, and death of vascular smooth muscle cells by degrading matrix and non-matrix substrates. Cardiovasc Res. 69(3)–624.
  • OgdenRW. 1972. Large deformation isotropic elasticity: on the correlation of theory and experiment for incompressible rubberlike solids. Proc R Soc Lond A Math Phys Sci. 326:565–584. 10.1098/rspa.1972.0026.
  • OkunoT, AndohA, BambaS, ArakiY, FujiyamaY, FujiyamaM, BambaT. 2002. Interleukin-1beta and tumor necrosis factor-alpha induce chemokine and matrix metalloproteinase gene expression in human colonic subepithelial myofibroblasts. Scand J Gastroenterol. 37:317–324.
  • PacheJ, KastratiA, MehilliJ, SchühlenH, DotzerF, HausleiterJ, FleckensteinM, NeumannFJ, SattelbergerU, SchmittC et al., 2003. Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO-2), Trial. J Am Coll Cardiol. 41:1283–1288. 10.1016/S0735-1097(03)00119-0.
  • PalmazJC, SibbittRR, ReuterSR, TioFO, RiceWJ. 1985. Expandable intraluminal graft: a preliminary study: work in progress. Radiology. 156:73–77.
  • PeirceSM, Van GiesonEJ, SkalakTC. 2004. Multicellular simulation predicts microvascular patterning and in silico tissue assembly. FASEB J. 18:731–733. 10.1096/fj.03-0933fje.
  • PericevicI, LallyC, TonerD, KellyDJ. 2009. The influence of plaque composition on underlying arterial wall stress during stent expansion: the case for lesion-specific stents. Med Eng Phys. 31:428–433. 10.1016/j.medengphy.2008.11.005.
  • ReidyMA, LindnerV. 1991. Basic FGF and growth of arterial cells. Ann NY Acad Sci. 638:290–299. 10.1111/j.1749-6632.1991.tb49039.x.
  • SchlumbergerW, ThieM, RauterbergJ, RobenekH. 1991. Collagen synthesis in cultured aortic smooth muscle cells. Modulation by collagen lattice culture, transforming growth factor-beta 1, and epidermal growth factor. Arterioscler Thromb. 11:1660–1666. 10.1161/01.ATV.11.6.1660.
  • SchwartzRS, HolmesDR. 1994. Pigs, dogs, baboons, and man – lessons for stenting from animal studies. J Interv Cardiol. 7:355–368. 10.1111/j.1540-8183.1994.tb00469.x.
  • SchwartzRS, HuberKC, MurphyJG, EdwardsWD, VlietstraRE, HolmesDR. 1992. Restenosis and the proportional neointimal response to coronary artery injury: results in a porcine model. J Am Coll Cardiol. 19:267–274. 10.1016/0735-1097(92)90476-4.
  • SouthgateKM, FisherM, BanningAP, ThurstonVJ, BakerAH, FabunmiRP, GrovesPH, DaviesM, NewbyAC. 1996. Upregulation of basement-membrane-degrading metalloproteinase secretion following balloon angioplasty of pig carotid arteries. Circ Res. 79:1177–1187. 10.1161/01.RES.79.6.1177.
  • TahirH, HoekstraAG, LorenzE, LawfordPV, HoseDR, GunnJ, EvansDJW. 2011. Multi-scale simulations of the dynamics of in-stent restenosis: impact of stent deployment and design. Interface Focus. 1(3):365–373. 10.1098/rsfs.2010.0024.
  • TerashimaM, RathoreS, SuzukiY, NakayamaY, KanedaH, NasuK, HabaraM, KatohO, SuzukiT. 2009. Accuracy and reproducibility of stent-strut thickness determined by optical coherence tomography. J Invasive Cardiol. 21:602–605.
  • ThorneBC, HayengaHN, HumphreyJD, PeirceSM. 2011. Toward a multi-scale computational model of arterial adaptation in hypertension: verification of a multi-cell agent-based model. Front Physiol. 2:20. 10.3389/fphys.2011.00020.
  • ThybergJ, BlomgrenK, RoyJ, TranPK, HedinA. 1997. Phenotype modulation of smooth muscle cells after arterial injury is associated with changes in the distribution of laminin and fibronectin. J Histochem Cytochem. 45:837–846. 10.1177/002215549704500608.
  • TimminsLH, MorenoMR, MeyerCA, CriscioneJC, RachevA, MooreJE, Jr. 2007. Stented artery biomechanics and device design optimization. Med Biol Eng Comput. 45(5):505–513. 10.1007/s11517-007-0180-3.
  • TimminsLH, MillerMW, ClubbFJ, Jr, MooreJE, Jr. 2011. Increased artery wall stress post-stenting leads to greater intimal thickening. Lab Invest. 91:955–967.
  • TracyRE. 1997. Declining density of intimal smooth muscle cells as a precondition for atheronecrosis in the coronary artery on VSMC density. Virchows Arch. 430:155–162. 10.1007/BF01008037.
  • Van BeusekomHMM, SerruysPW. 2010. Drug-eluting stent endothelium: presence or dysfunction. J Am Coll Cardiol Interv. 3:76–77. 10.1016/j.jcin.2009.10.016.
  • Von der MarkK. 1981. Localization of collagen types in tissues. Int Rev Connect Tissue Res. 9:265–324.
  • WalkerDC, SouthgateJ, HillG, HolcombeM, HoseDR, WoodSM, MacNeilS, SmallwoodRH. 2004. The epitheliome: agent-based modelling of the social behaviour of cells. Biosystems. 76:89–100.
  • WangWQ, LiangDK, YangDZ, QiM. 2006. Analysis of the transient expansion behavior and design optimization of coronary stents by finite element method. J Biomech. 39:21–32. 10.1016/j.jbiomech.2004.11.003.
  • WeltFG, RogersC. 2002. Inflammation and restenosis in the stent era. Arterioscler Thromb Vasc Biol. 22(11):1769–1776. 10.1161/01.ATV.0000037100.44766.5B.
  • WentzelJJ, KramsR, SchuurbiersJCH, OomenJA, KloetJ, van der GiessenWJ, SerruysPW, SlagerCJ. 2001. Relationship between neointimal thickness and shear stress after wallstent implantation in human coronary arteries. Circulation. 103:1740–1745. 10.1161/01.CIR.103.13.1740.
  • WentzelJJ, WhelanDM, van der GiessenWJ, van BeusekomHMM, AndhyiswaraI, SerruysPW, SlagerCJ, KramsR. 2000. Coronary stent implantation changes 3-D vessel geometry and 3-D shear stress distribution. J Biomech. 33:1287–1295. 10.1016/S0021-9290(00)00066-X.
  • WienekeH, HaudeM, KnocksM, GutersohnA, von BirgelenC, BaumgartD, ErbelR. 1999. Evaluation of coronary stents in the animal model: a review. Materialwissenschaft und Werkstofftechnik. 30:809–813. 10.1002/(SICI)1521-4052(199912.
  • WooldridgeM. 2002. An introduction to multiagent systems. Chichester, UK: Wiley.
  • XiaT, AkersK, EisenAZ, SeltzerJL. 1996. Comparison of cleavage site specificity of gelatinases A and B using collagenous peptides. Biochim Biophys Acta. 1293:259–266.
  • ZahedmaneshH, CahillPA, LallyC. 2012. Vascular stent design optimisation using numerical modelling techniques. In: NaikGR, editor. Applied biological engineering-principles and practice., InTech, ISBN 978-953-51-0412-4, doi:https://doi.org/10.5772/37357.
  • ZahedmaneshH, KellyD, LallyC. 2010. Simulation of a balloon expandable stent in a realistic coronary artery, determination of the optimum modelling strategy. J Biomech. 43:2126–2132, 10.1016/j.jbiomech.2010.03.050.
  • ZahedmaneshH, LallyC. 2009. Determination of the influence of stent strut thickness using the finite element method: implications for vascular injury and in-stent restenosis. Med Biol Eng Comput. 47:385–393. 10.1007/s11517-009-0432-5.
  • ZahedmaneshH, LallyC. 2012. A multiscale mechanobiological model using agent based models, application to vascular tissue engineering. Biomech Model Mechanobiol. 11:363–377. 10.1007/s10237-011-0316-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.