394
Views
18
CrossRef citations to date
0
Altmetric
Articles

The influence of yield surface shape and damage in the depth-dependent response of bone tissue to nanoindentation using spherical and Berkovich indenters

&
Pages 492-505 | Received 12 Dec 2012, Accepted 19 Jun 2013, Published online: 26 Sep 2013

References

  • ArmeroF, Pérez-FoguetA. 2002a. On the formulation of closest-point projection algorithms in elastoplasticity – Part I: The variational structure. Int J Numer Methods Eng. 53(2):297–329.
  • ArmeroF, Pérez-FoguetA.2002b. On the formulation of closestpoint projection algorithms in elastoplasticity – Part ii: Globally convergent schemes. Int J Numer Methods Eng. 53(2):331–374.
  • BayraktarHH, MorganEF, NieburGL, MorrisGE, WongEK, KeavenyTM. 2004. Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J Biomech. 37(1):27–35.
  • BolshakovA, PharrGM. 1998. Influences of the pileup on the measurement of mechanical properties by load and depth sensing indentation techniques. J Mater Res. 13:1049–1058.
  • BolzonG, MaierG, PanicoM. 2004. Material model calibration by indentation, imprint mapping and inverse analysis. Int J Solids Struct. 41(11), 2975–2975.
  • CarnelliD, GastaldiD, SassiV, ControR, OrtizC, VenaP. 2010. A finite element model for direction-dependent mechanical response to nanoindentation of cortical bone allowing for anisotropic post-yield behavior of the tissue. J Biomech Eng. 132(8):081008.
  • CarnelliD, LucchiniR, PonzoniM, ControR, VenaP. 2011. Nanoindentation testing and finite element simulations of cortical bone allowing for anisotropic elastic and inelastic mechanical response. J Biomech. 44(10):1852–1858.
  • ChenX, OgasawaraN, ZhaoM, ChibaN. 2007. On the uniqueness of measuring elastoplastic properties from indentation: The indistinguishable mystical materials. J Mech Phys Solids. 55(8):1618–1660.
  • CowinSC. 1979. On the strength anisotropy of bone and wood. J Appl Mech. 46(4):832–838.
  • CowinSC. 1989. Bone mechanics. Boca Raton, FL: CRC Press.
  • CurreyJD. 1969. The relationship between the stiffness and the mineral content of bone. J Biomech. 2(4):477–480.
  • FranzosoG, ZyssetPK. 2009. Elastic anisotropy of human cortical bone secondary osteons measured by nanoindentation. J Biomech Eng. 131:1–11, 021001.
  • FratzlP, WeinkamerR. 2007. Nature's hierarchical materials. Prog Mater Sci. 52(8):1263–1334.
  • GanneauFP, ConstantinidesG, UlmF-J. 2006. Dual-indentation technique for the assessment of strength properties of cohesive-frictional materials. Int J Solid Struct. 43(6):1727–1745.
  • GarciaD, ZyssetPK, CharleboisM, CurnierA. 2009. A three-dimensional elastic plastic damage constitutive law for bone tissue. Biomech Model Mechanobiol. 8(2):149–165.
  • GuptaH, WagermaierW, ZicklerG, HartmannJ, FunariS, RoschgerP, WagnerH, FratzlP. 2006. Fibrillar level fracture in bone beyond the yield point. Int J Fracture. 139:425–436. 10.1007/s10704-006-6635-y.
  • HayJC, BolshakovA, PharrGM. 1999. A critical examination of the fundamental relations used in the analysis of nanoindentation data. J Mater Res. 14:2296–2305.
  • HellmichC, FritschA, DormieuxL. 2011. Multiscale homogenization theory: an analysis tool for revealing mechanical design principles in bone and bone replacement materials. In: GruberP, BrucknerD, HellmichC, SchmiedmayerH-B, StachelbergerH, GebeshuberIC, editors. Biomimetics – materials, structures and processes, Biological and medical physics, biomedical engineering. Berlin, Heidelberg: Springer. p. 81–103.
  • HengsbergerS, KulikA, ZyssetPK. 2002. Nanoindentation discriminates the elastic properties of individual human bone lamellae under dry and physiological conditions. Bone. 30(1):178–184.
  • HerbertEG, PharrGM, OliverWC, LucasBN, HayJL. 2001. On the measurement of stress–strain curves by spherical indentation. Thin Solid Films. 398:331–335.
  • HertzH. 1881. Über die Berührung fester elastischer Körper. J Rein Angew Math. 92:156–171.
  • HofflerCE, GuoXE, ZyssetPK, GoldsteinSA. 2005. An application of nanoindentation technique to measure bone tissue lamellae properties. J Biomech Eng. 127(7):1046–1053.
  • KeavenyTM, MorganEF, NieburGL, YehOC. 2001. Biomechanics of trabecular bone. Annu Rev Biomed Eng. 3(1):307–333.
  • LeesS, TaoNJ, LindsaySM. 1990. Studies of compact hard tissues and collagen by means of Brillouin light scattering. Connect Tissue Res. 24(3–4):187–205.
  • LewisG, NymanJS. 2008. The use of nanoindentation for characterizing the properties of mineralized hard tissues: state-of-the art review. J Biomed Mater Res A. 87(1):286–301.
  • LucchiniR, CarnelliD, PonzoniM, BertarelliE, GastaldiD, VenaP. 2011. Role of damage mechanics in nanoindentation of lamellar bone at multiple sizes: experiments and numerical modeling. J Mech Behav Biomed. 4(8):1852–1863.
  • MaghousS, DormieuxL, BarthélémyJF. 2009. Micromechanical approach to the strength properties of frictional geomaterials. Euro J Mech A. 28(1):179–188.
  • MullinsLP, BruzziMS, McHughPE. 2009. Calibration of a constitutive model for the post-yield behaviour of cortical bone. J Mech Behav Biomed. 2(5):460–470.
  • O'BrienFJ, TaylorD, LeeTC. 2002. An improved labelling technique for monitoring microcrack growth in compact bone. J Biomech. 35(4):523–526.
  • OliverWC, PharrGM. 1992. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Sci. 7:1564–1583.
  • OliverWC, PharrGM. 2004. Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res. 19(1):3–20.
  • PoonB, RittelD, RavichandranG. 2008a. An analysis of nanoindentation in elasto-plastic solids. Int J Solid Struct. 45(25–26):6399–6415.
  • PoonB, RittelD, RavichandranG. 2008b. An analysis of nanoindentation in linearly elastic solids. Int J Solid Struct. 45(24):6018–6033.
  • ReisingerA, PahrD, ZyssetPK. 2010. Elastic anisotropy of bone lamellae as a function of fibril orientation pattern. Biomech Model Mechanobiol. 1–11. 10.1007/s10237-010-0218-6.
  • SchwiedrzikJJ, WolframU, ZyssetPK. 2013. A generalized anisotropic quadric yield criterion and its application to bone tissue at multiple length scales. Biomech Model Mechanobiol. 10.1007/s10237-013-0472-5.
  • SchwiedrzikJJ, ZyssetPK. 2012. An anisotropic elastic–viscoplastic damage model for bone tissue. Biomech Model Mechanobiol. 10.1007/s10237-012-0392-9.
  • SneddonIN. 1948. Boussinesq's problem for a rigid cone. Math Proc Cambridge. 44(4):492–507.
  • SneddonIN. 1965. The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int J Eng Sci. 3(1):47–57.
  • SugawaraY, KamiokaH, HonjoT, TezukaK, Takano-YamamotoT. 2005. Three-dimensional reconstruction of chick calvarial osteocytes and their cell processes using confocal microscopy. Bone. 36(5):877–883.
  • SunX, JeonJH, BlendellJ, AkkusO. 2010. Visualization of a phantom post-yield deformation process in cortical bone. J Biomech. 43(10):1989–1996.
  • SwadenerJG, PharrGM. 2001. Indentation of elastically anisotropic half-spaces by cones and parabolae of revolution. Philos Mag A. 81(2):447–466.
  • TaiK, UlmF-J, OrtizC. 2006. Nanogranular origins of the strength of bone. Nano Lett. 6(11):2520–2525.
  • WeinerS, AradT, SabanayI, TraubW. 1997. Rotated plywood structure of primary lamellar bone in the rat: orientations of the collagen fibril arrays. Bone. 20(6):509–514.
  • WeinerS, TraubW, WagnerHD. 1999. Lamellar bone: structure–function relations. J Struct Biol. 126(3):241–255.
  • WolframU, WilkeH-J, ZyssetPK. 2010. Rehydration of vertebral trabecular bone: influences on its anisotropy, its stiffness and the indentation work with a view to age, gender and vertebral level. Bone. 46(2):348–354.
  • WolframU, GrossT, PahrD, SchwiedrzikJJ, WilkeH-J, ZyssetPK. 2012. Fabric based Tsai–Wu yield criteria for vertebral trabecular bone in stress and strain space. J Mech Behav Biomed. 15:218–228.
  • YeniYN, DongXN, FyhrieDP, LesCM. 2004. The dependence between the strength and stiffness of cancellous and cortical bone tissue for tension and compression: extension of a unifying principle. Bio-Med Mater Eng. 14(3):303–310.
  • ZhangJ, MichalenkoMM, KuhlE, OvaertTC. 2010. Characterization of indentation response and stiffness reduction of bone using a continuum damage model. J Mech Behav Biomed. 3(2):189–202.
  • ZhangJ, NieburGL, OvaertTC. 2008. Mechanical property determination of bone through nano- and micro-indentation testing and finite element simulation. J Biomech. 41(2):267–275.
  • ZiouposP, HansenU, CurreyJD. 2008. Microcracking damage and the fracture process in relation to strain rate in human cortical bone tensile failure. J Biomech. 41(14):2932–2939.
  • ZyssetPK. 1994. A constitutive law for trabecular bone [PhD thesis]. Lausanne (Switzerland): Ecole Polytechnique Federale de Lausanne.
  • ZyssetPK. 2009. Indentation of bone: a short review. Osteoporos Int. 20:1049–1055.
  • ZyssetPK, CurnierA. 1995. An alternative model for anisotropic elasticity based on fabric tensors. Mech Mater. 21(4):243–250.
  • ZyssetPK, RincónL. 2006. An alternative fabric-based yield and failure criterion for trabecular bone. In: Holzapfel GA, Ogden RW, editors. Mechanics of biological tissues. Berlin, Heidelberg: Springer. p. 457–470.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.