1,203
Views
53
CrossRef citations to date
0
Altmetric
Articles

Finite element analysis of a hemi-pelvis: the effect of inclusion of cartilage layer on acetabular stresses and strain

, , &
Pages 697-710 | Received 07 Dec 2012, Accepted 09 Sep 2013, Published online: 24 Oct 2013

References

  • AndersonAE, PetersCL, TuttleBD, WeissJA. 2005. Subject-specific finite element model of the pelvis: development, validation, sensitive studies. J Biomech Eng. 27(3):364–373.
  • ANSYS v 11.0 User's Manual, ANSYS Inc., Canonsburg, PA, USA.
  • BacaV, HorakZ, MikulenkaP, DzupaV. 2008. Comparison of an inhomogeneous orthotropic and isotropic material models used for FE analyses. Med Eng Phys. 30(7):924–930.
  • BergmannG, DeuretzbacherG, HellerM, GraichenF, RohlmannA, StraussJ, DudaGN. 2001. Hip contact forces and gait patterns from routine activities. J Biomech. 34(7):859–871.
  • BernakiewiczG, VicecontiM. 2002. The role of parameter identification in finite element contact analysis with reference to orthopaedic biomechanics application. J Biomech. 35(1):61–67.
  • BesongAA, LeeR, FarrarR, JinZM. 2001. Contact mechanics of a novel metal-on-metal total hip replacement. Proc Inst Mech Eng H J Eng Med. 215:543–548.
  • BobynJD, MortimerES, GlassmanAH, EnghCA, MillerJE, BrooksCE. 1992. Producing and avoiding stress shielding: laboratory and clinical observations of noncemented total hip arthroplasty. Clin Orthop Relat Res. 274:79–96.
  • BosisioMR, TalmantA, SkalliW, LaugierP, MittonD. 2007. Apparent Young's modulus of human radius using inverse finite-element method. J Biomech. 40:2022–2028.
  • BrowneJA, BechtoldD, BerryDJ, HanssenAD, LewallenDD. 2010. Failed metal-on-metal hip arthroplasties. Clin Orthop Relat Res. 468(9):2313–2320.
  • CarterDR, HayesWC. 1977. The compressive behavior of bone as a two-phase porous structure. J Bone Joint Surg Am. 59 –A:954–962.
  • CarterDR, VasuR, HarrisWH. 1982. Stress distributions in the acetabular region II: effects of cement thickness and metal backing of the total hip acetabular component. J Biomech. 17(3):165–170.
  • CilingiraAC, UcarV, KazanR. 2007. Three-dimensional anatomic finite element modelling of hemi-arthroplasty of human hip joint. Trends Biomater Artif Organs. 21(1):63–72.
  • ClarkeSG, PhillipsATM, BullAMJ. 2013. Evaluating a suitable level of model complexity for finite element analysis of the intact acetabulum. Comput Methods Biomech Biomed Eng. 16(7):717–724.
  • CrowninshieldRD, BrandRA, PedersenDR. 1983. A stress analysis of acetabular reconstruction in protrusio acetabuli. J Bone Joint Surg Am. 65(4):495–499.
  • DalstraM, HuiskesR. 1991. The pelvic bone as a sandwich construction: a three dimensional finite element study. J Biomech. 24(6):455.
  • DalstraM, HuiskesR. 1995. Load transfer across the pelvis bone. J Biomech. 28(6):715–724.
  • DalstraM, HuiskesR, OdgaardA, Van ErningL. 1993. Mechanical and textural properties of pelvic trabecular bone. J Biomech. 26(4–5):523–535.
  • DalstraM, HuiskesR, van ErningL. 1995. Development and validation of a three-dimensional finite element model of the pelvic bone. J Biomech Eng. 117(3):272–278.
  • DavisET, OlsenM, ZderoR, PapiniM, WadellJP, SchemetischEH. 2009. A biomechanical and finite element analysis of femoral neck notching during hip resurfacing. J Biomech Eng. 131(4): 041002 (1–8).
  • DostalWF, AndrewsJG. 1981. A three-dimensional biomechanical model of hip musculature. J Biomech. 14(11):803–812.
  • FrostHM. 1990a. Skeletal structural adaptations to mechanical uses (SATMU): 1. Redefining Wolff's law: the bone remodelling problem. Anat Rec. 226(4):403–413.
  • FrostHM. 1990b. Skeletal structural adaptations to mechanical uses (SATMU): 2. Redefining Wolff's law: the remodelling problem. Anat Rec. 226(4):414–422.
  • FrostHM. 1983. A determinant of bone architecture. The minimum effective strain. Clin Orthop Relat Res. 175:286–292.
  • GarciaJM, DoblareM, SeralB, SeralF, PalancaD, GarciaL. 2000. Three-dimensional finite element analysis of several internal and external pelvis fixations. J Biomech Eng. 122(5):516–522.
  • GhoshR, GuptaS, DickinsonA, BrowneM. 2012. Experimental validation of finite element models of intact and implanted composite hemi-pelvises using digital image correlation. J Biomech Eng. 134(8): 081003 (1–9).
  • GhoshR, GuptaS, DickinsonA, BrowneM. 2013. Experimental validation of numerically predicted strain and micromotion in intact and implanted composite hemi-pelvises. Proc Inst Mech Eng H J Eng Med. 227(2):162–174.
  • GoslingJA, HarrisPF, HumphersonJR, WhitmoreI, WillanPLT. 2008. Human Anatomy Color Atlas and Textbook. 5th ed.Mosby/Elsevier, Philadelphia, PA, USA.
  • HuiskesR. 1987. Finite element analysis of acetabular reconstruction. Acta Orthop Scand. 58(6):620–625.
  • HuiskesR, WeinansMS, van RietbergenMS. 1992. The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin Orthop Relat Res. 274:124–134.
  • JacobHAC, HugglerAH, DietschiC, SchreiberA. 1976. Mechanical function of subchondral bone as experimentally determined on the acetabulum of the human pelvis. J Biomech. 9:625–627.
  • JanssenD, ZwarteleRE, DoetsHC, VerdonschotN. 2010. Computational assessment of press-fit acetabular implant fixation: the effect of implant design, interference fit, bone quality, and frictional properties. Proc Inst Mech Eng H J Eng Med. 224(H1):65–75.
  • JeeWS, FrostHM. 1992. Skeletal adaptations during growth. Triangle. 31:77–88.
  • KempsonG. 1980. In: SokoloffL., editor. The mechanical properties of articular cartilage. The joint and synovial fluid. New York. Chapter 5Academic. p. 385–409.
  • KimPR, BeaulePE, LaflammeGY, DunbarM. 2008. Causes of early failure in multicenter clinical trial of hip resurfacing. J Arthroplasty. 23(6):44–49.
  • LeungASO, GordonLM, SkrinskasT, SzwedowskiT, WhyneCM. 2009. Effects of bone density alterations on strain patterns in the pelvis: application of a finite element model. Proc Inst Mech Eng H J Eng Med. 223(H8):965–976.
  • LewisJL, AskewMJ, WixsonRL, KramerGM, TarrRR. 1984. The influence of prosthetic stem stiffness and of a calcar collar on stresses in the proximal end of the femur with a cemented femoral component. J Bone Joint Surg Am. 66:280–286.
  • LongWT, DastaneM, HarrisMJ, WanZ, DorrLD. 2010. Failure of the Durom Metasul® acetabular component. Clin Orthop Relat Res. 468(2):400–405.
  • MajumderS, RoychowdhuryA, PalS. 2004. Variations of stress in pelvic bone during normal walking, considering all active muscles. Trends Biomater Artif Organs. 17(2):48–53.
  • MorganEF, KeaveneyTM. 2001. Dependence of yield strain of human trabecular bone on anatomic site. J Biomech. 34(5):569–577.
  • New AMR. 1997. Experimental and finite element studies of acetabular cement pressurisation and socket fixation in total hip replacement [PhD thesis]. Queen Mary and Westfield College, University of London.
  • NJR. 2010. National joint registry for England and Wales. 7th Annual ReportHertfordshire: Hemel Hempstead.
  • OonishiH, IshaH, HasegawaT. 1983. Mechanical analysis of the human pelvis and its application to the artificial hip joint-by means of the three dimensional finite element method. J Biomech. 16(6):427–444.
  • PalB, GuptaS. 2011. The effect of primary stability on load transfer and bone remodelling within the uncemented resurfaced femur. Proc Inst Mech Eng H J Eng Med. 225(6):549–561.
  • PalB, GuptaS, NewAMR. 2009. A numerical study of failure mechanisms in the cemented resurfaced femur: effects of interface characteristics and bone remodelling. Proc Inst Mech Eng H J Eng Med. 223(H4):471–484.
  • PedersenDR, CrowninshieldRD, BrandRA, JohnstonRC. 1982. An axisymmetric model of acetabular components in total hip arthroplasty. J Biomech. 15(4):305–315.
  • PengL, BaiJ, ZengX, ZhouY. 2006. Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions. Med Eng Phys. 28(3):227–233.
  • Phillips ATM. 2005. Numerical modelling of the pelvis and acetabular construct following hip arthroplasty [PhD thesis]. The University of Edinburgh.
  • PhillipsATM, PankajP, HowieCR, UsmaniAS, SimpsonAHRW. 2007. Finite element modelling of the pelvis: inclusion of muscular and ligamentous boundary conditions. Med Eng Phys. 29(7):739–748.
  • ShepherdDET, SeedhomBB. 1999. Thickness of human articular cartilage in joints of the lower limb. Ann Rheum Dis. 58:27–34.
  • ShimVB, PittoRP, StreicherRM, HunterPJ, AndersonIA. 2008. Development and validation of patient-specific finite element model of the hemi-pelvis generated from a sparse CT data set. J Biomech Eng. 130: 051010 (1–11).
  • SpearsIR, PfleidererM, SchneiderE, HaileeE, BergmannG, MorlockMM. 2000. Interfacial conditions between a press-fit acetabular cup and bone during daily activities: implications for achieving bone in-growth. J Biomech. 33(11):1471–1477.
  • SpearsIR, PfleidererM, SchneiderE, HaileeE, MorlockMM. 2001. The effect of interfacial parameters on cup-bone relative micromotions: a finite element investigation. J Biomech. 34(1):113–120.
  • TaddeiF, PancantiA, VicecontiM. 2004. An improved method for the automatic mapping of computed tomography numbers onto finite element models. Med Eng Phys. 26(1):61–69.
  • TaylorM. 2006. Finite element analysis of the resurfaced femoral head. Proc Inst Mech Eng H J Eng Med. 220(H2):289–297.
  • ThompsonMS, Northmore-BallMD, TannerKE. 2002. Effect of acetabular resurfacing component material and fixation on the strain distribution in the pelvis. Proc Inst Mech Eng H J Eng Med. 216(H4):237–245.
  • UdofiaIJ, YewA, JinJM. 2004. Contact mechanics analysis of metal-on-metal hip resurfacing prostheses. Proc Inst Mech Eng H J Eng Med. 218:293–305.
  • VasuR, CarterDR, HarrisWH. 1982. Stress distributions in the acetabular region – I. before and after total hip replacement. J Biomech. 15(3):155–164.
  • VerhulpE, van RietbergenB, MullerR, HuiskesR. 2008. Indirect determination of trabecular bone effective tissue failure properties using micro-finite element simulations. J Biomech. 41(7):1479–1485.
  • VicecontiM, DavinelliM, TaddeiF, CappelloA. 2004. Automatic generation of accurate subject specific bone finite element models to be used in clinical studies. J Biomech. 37:1597–1605.
  • WidmerKH, ZurfluhB, MorscherEW. 2002. Load transfer and fixation mode of press-fit acetabular sockets. J Arthroplasty. 17:926–935.
  • ZhangQH, WangJY, LuptonC, AdegbilePH, GuoZX, LiuQ, TongJ. 2010. A subject-specific pelvic bone model and its application to cemented acetabular replacements. J Biomech. 43(14):2722–2727.
  • ZiouposP, CookRB, HutchinsonJR. 2008. Some basic relationships between density values in cancellous and cortical bone. J Biomech. 41(9):1961–1968.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.