320
Views
11
CrossRef citations to date
0
Altmetric
Articles

A poroviscohyperelastic model for numerical analysis of mechanical behavior of single chondrocyte

, &
Pages 126-136 | Received 17 Sep 2013, Accepted 07 Dec 2014, Published online: 15 Jan 2015

References

  • ABAQUS. 1996. ABAQUS/standard user's manual (version 5.6). Pawtucket (RI): Hibbitt, Karlsson & Sorensen, Inc.
  • Ateshian GA, Costa KD, Hung CT. 2007. A theoretical analysis of water transport through chondrocytes. Biomech Model Mechanobiol. 6:91–101.
  • Baaijens FPT, Trickey WR, Laursen TA, Guilak F. 2005. Large deformation finite element analysis of micropipette aspiration to determine the mechanical properties of the chondrocyte. Ann Biomed Eng. 33(4):494–501.
  • Biot MA. 1941. General theory of three-dimensional consolidation. J Appl Phys. 12:155–164.
  • Darling EM, Zauscher S, Block JA, Guilak F. 2007. A thin-layer model for viscoelastic, stress-relaxation testing of cells using atomic force microscopy: do cell properties reflect metastatic potential. Biophys J. 92:1784–1791.
  • Darling EM, Zauscher S, Guilak F. 2006. Viscoelastic properties of zonal articular chondrocytes measured by atomic force microscopy. Osteoarthr Cartilage. 14:571–579.
  • Faria EC, Ma N, Gazi E, Gardner P, Brown M, Clarke NW, Snook RD. 2008. Measurement of elastic properties of prostate cancer cells using AFM. Analyst. 133:1498–1500.
  • Franz CM, Puech PH. 2008. Atomic force microscopy: a versatile tool for studying cell morphology, adhesion and mechanics. Cell Mol Bioeng. 1(4):289–300.
  • Higginson GR, Norman R. 1974. The lubrication of porous elastic solids with reference to the functioning of human joints. J Mech Eng Sci. 16(4):250–257.
  • Holmes MH, Mow VC. 1990. The nonlinear characteristics of soft gels and hydrated connective tissues in ultrafiltration. J Biomech. 23(11):1145–1156.
  • Jones WR, Ting-Beall HP, Lee GM, Kelley SS, Hochmuth RM, Guilak F. 1997. Mechanical properties of human chondrocytes and chondrons from normal and osteoarthritic cartilage. Paper presented at the 43rd Annual Meeting, Orthopaedic Research Society, San Francisco, CA.
  • Kaufmann MV. 1996. Porohyperelastic analysis of large arteries including species transport and swelling effects [Ph.D. dissertation]. The University of Arizona: Tucson (AZ).
  • Kuznetsova TG, Starodubtseva MN, Yegorenkov NI, Chizhik SA, Zhanov RI. 2007. Atomic force microscopy probing of cell elasticity. Micron. 38:824–833.
  • Lin DC, Dimitriadis EK, Horkay F. 2007. Elasticity of rubber-like materials measured by AFM nanoindentation. eXPRESS Polym Lett. 1(9):576–584.
  • McCutchen CW. 1982. Cartilage is poroelastic, not viscoelastic (including and exact theorem about strain energy and viscous loss, and an order of magnitude relation for equilibration time). J Biomech. 15(4):325–327.
  • McCutchen CW. 1998. Consolidation theory derived without invoking porosity. Int J Solids Struct. 35(1–2):69–81.
  • Meroi EA, Natali AN, Schrefler BA. 1999. A porous media approach to finite deformation behaviour in soft tissues. Comput Methods Biomech Biomed Eng. 2:157–170.
  • Moo EK, Herzog W, Han SK, Abu Osman NA, Pingguan-Murphy B, Federico S. 2012. Mechanical behaviour of in-situ chondrocytes subjected to different loading rates: a finite element study. Biomech Model Mechanobiol. 11:983–993.
  • Mow VC, Kuei SC, Lai WM, Armstrong CG. 1980. Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments. J Biomech Eng. 102(1):73–84.
  • Mow VC, Ratcliffe A, Poole AR. 1992. Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials. 13(2):67–97.
  • Nguyen TC. 2005. Mathematical modelling of the biomechanical properties of articular cartilage [Ph.D. thesis]. Brisbane: Queensland University of Technology.
  • Oloyede A, Broom ND. 1991. Is classical consolidation theory applicable to articular cartilage deformation? Clin Biomech. 6(4):206–212.
  • Oloyede A, Broom ND. 1994. The generalized consolidation of articular cartilage: an investigation of its near-physiological response to static load. Connect Tissue Res. 31(1):75–86.
  • Oloyede A, Broom ND. 1996. The biomechanics of cartilage load-carriage. Connect Tissue Res. 34(2):119–143.
  • Oloyede A, Flachsmann R, Broom ND. 1992. The dramatic influence of loading velocity on the compressive response of articular cartilage. Connect Tissue Res. 27:211–224.
  • Rico F, Roca-Cusachs P, Gavara N, Farre R, Rotger M, Navajas D. 2005. Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips. Phys Rev E. 72(021914):1–10.
  • Sherwood JD. 1993. Biot poroelasticity of a chemically active shale. Proc R Soc Lond A. 440:365–377.
  • Shieh AC, Koay EJ, Athanasiou KA. 2006. Strain-dependent recovery behavior of single chondrocytes. Biomech Model Mechanobiol. 5:172–179.
  • Simon BR. 1992. Multiphase poroelastic finite element models for soft tissue structures. Appl Mech Rev. 45(6):191–219.
  • Simon BR, Gaballa MA. 1989. Total Lagrangian ‘porohyperelastic’ finite element models of soft tissue undergoing finite strain.pdf. In: Rubinsky B, editor. 1989 In Advances in bioengineering. BED-Vol. 15. New York: ASME; p. 97–98.
  • Simon BR, Kaufmann MV, McAfee MA, Baldwin AL. 1998. Porohyperelastic finite element analysis of large arteries using ABAQUS. ASME J Biomech Eng. 120:296–298.
  • Simon BR, Kaufmann MV, McAfee MA, Baldwin AL, Wilson LM. 1998. Identification and determination of material properties for porohyperelastic analysis of large arteries. ASME J Biomech Eng. 120:188–194.
  • Simon BR, Liable JP, Pflaster D, Yuan Y, Krag MH. 1996. A poroelastic finite element formulation including transport and swelling in soft tissue structures. J Biomech Eng. 118:1–9.
  • Singh S, Jones BJ, Crawford RW, Xiao Y. 2008. Characterization of a mesenchymal-like stem cell population from osteophyte tissue. Stem Cells Dev. 17(2):245–254.
  • Terzaghi K. 1943. Theoritical soil mechanics. New York: John Wiley.
  • Touhami A, Nysten B, Dufrene YF. 2003. Nanoscale mapping of the elasticity of microbial cells by atomic force microscopy. Langmuir. 19:4539–4543.
  • Trickey WR, Baaijens FPT, Laursen TA, Alexopoulos LG, Guilak F. 2006. Determination of the Poisson's ratio of the cell: recovery properties of chondrocytes after release from complete micropipette aspiration. J Biomech. 39(1):78–87.
  • Trickey WR, Lee GM, Guilak F. 2000. Viscoelastic properties of chondrocytes from normal and osteoarthritic human cartilage. J Orthop Res. 18:891–898.
  • Wu JZ, Herzog W. 2000. Finite element simulation of location- and time-dependent mechanical behavior of chondrocytes in unconfined compression tests. Ann Biomed Eng. 28:318–330.
  • Zhang CY, Zhang YW. 2007. Effects of membrane pre-stress and intrinsic viscoelasticity on nanoindentation of cells using AFM. Philos Mag. 87(23):3415–3435.
  • Zhao R, Wyss K, Simmons CA. 2009. Comparison of analytical and inverse finite element approaches to estimate cell viscoelastic properties by micropipette aspiration. J Biomech. 42:2768–2773.
  • Zhou EH, Lim CT, Quek ST. 2005. Finite element simulation of the micropipette aspiration of a living cell undergoing large viscoelastic deformation. Mech Adv Mater Struct. 12(6):501–512.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.