167
Views
2
CrossRef citations to date
0
Altmetric
Articles

Biomechanical rationale of coronary artery bypass grafting of multivessel disease

, &
Pages 297-305 | Received 25 Jul 2014, Accepted 25 Jan 2015, Published online: 05 Mar 2015

References

  • Chaichana Th, Sun Zh, Jewkes J. 2012. Computational fluid dynamics analysis of the effect of plaques in the left coronary artery. Comput Math Methods Med. 2012:1–9. doi:10.1155/2012/504367.
  • Chuchard P, Puapansawat Th, Siriapisith Th, Wu Yo, Wiwatanapataphee B. 2011. Numerical simulation of blood flow through the system of coronary arteries with diseased left anterior descending. Int J Math Comput Simul. 5:334–341.
  • De Santis G, Mortier P, De Beule M, Segers P, Verdonck P, Verhegghe B. 2010. Patient-specific computational fluid dynamics: structured mesh generation from coronary angiography. Med Biol Eng Comput. 48:371–380. doi:10.1007/s11517-010-0583-4.
  • Ding J, Yo Liu, Wang F, Bai F. 2012. Impact of competitive flow on hemodynamics in coronary surgery: numerical study of ITA-LAD model. Comput Math Methods Med. 356187:1–7. doi:10.1155/2012/356187.
  • Filipovic N, Milasinovic D, Jagic N, Miloradovic V, Hetterich H, Rieber J. 2011. Numerical simulation of the flow field and mass transport pattern within the coronary artery. Comput Methods Biomech Biomed Eng. 379:388.
  • Friedman M, Baker P, Ding Z, Kuban B. 1996. Relationship between the geometry and quantitative morphology of the left anterior descending coronary artery. Atherosclerosis. 125:183–192. doi:10.1016/0021-9150(96)05869-8.
  • Göktepe S, Abilez O, Kuhl E. 2010. A generic approach towards finite growth with examples of athlete's heart, cardiac dilation, and cardiac wall thickening. J Mech Phys Solids. 58:1661–1680.
  • Humphrey J, Strumpf R, Yin F. 1990. Determination of a constitutive relation for passive myocardium, II – parameter estimation. J Biomech Eng. 112:340–346. doi:10.1115/1.2891194.
  • Jung J, Lyczkowski R, Panchal Ch, Hassanein A. 2006. Multiphase hemodynamic simulation of pulsatile flow in a coronary artery. J Biomech. 39:2064–2073. doi:10.1016/j.jbiomech.2005.06.023.
  • Kaazempur-Mofrad M, Ethier C. 2001. Mass transport in an anatomically realistic human right coronary artery. Ann Biomed Eng. 29:121–127. doi:10.1114/1.1349704.
  • Kim H, Figueroa C, Hughes T, Jansen K, Taylor C. 2009. Augmented Lagrangian method for constraining the shape of velocity profiles at outlet boundaries for three-dimensional finite element simulations of blood flow. Comput Methods Appl Mech Eng. 198:3551–3566. doi:10.1016/j.cma.2009.02.012.
  • Kim H, Vignon-Clementel I, Coogan J, Figueroa C, Jansen K, Taylor C. 2010. Patient-specific modeling of blood flow and pressure in human coronary arteries. Ann Biomed Eng. 38:3195–3209. doi:10.1007/s10439-010-0083-6.
  • Kline T, Zamir M, Ritman E. 2010. Accuracy of microvascular measurements obtained from micro-CT images. Ann Biomed Eng. 38:2851–2864. doi:10.1007/s10439-010-0058-7.
  • Ku D. 1997. Blood flow in arteries. Ann Rev Fluid Mech. 29:399–434. doi:10.1146/annurev.fluid.29.1.399.
  • Kumar A. 2010. Computational model of blood flow in the presence of atherosclerosis. In: 6th World Congress of Biomechanics. Singapore IFMBE Proceedings. p. 1591–1594. 10.1007/978-3-642-14515-5_405.
  • Lee J, Smith N. 2012. The Multi-scale modelling of coronary blood flow. Ann Biomed Eng. 40:2399–2413. doi:10.1007/s10439-012-0583-7.
  • Leuprecht A, Perktold K, Prosi M, Berk T, Trubel W, Schima H. 2002. Numerical study of hemodynamics and wall mechanics in distal end-to-side anastomoses of bypass grafts. J Biomech. 35:225–236. doi:10.1016/S0021-9290(01)00194-4.
  • Rambhia S, Liang X, Xenos M, Alemu Y, Maldonado N, Kelly A, Chakraborti S, Weinbaum S, Cardoso L, Einav S, Bluestein D. 2012. Microcalcifications increase coronary vulnerable plaque rupture potential: a patient-based micro-ct fluid–structure interaction study. Ann Biomed Eng. 40:1443–1454. doi:10.1007/s10439-012-0511-x.
  • Schwaiger M, Ziegler S, Nekolla S. 2010. PET/CT challenge for the non-invasive diagnosis of coronary artery disease. Eur J Radiol. 73:494–503. doi:10.1016/j.ejrad.2009.12.025.
  • Torii R, Keegan J, Wood N, Dowsey A, Hughes A, Yang G, Firmin, Thom A, Xu, Xu X. 2010. MR image-based geometric and hemodynamic investigation of the right coronary artery with dynamic vessel motion. Ann Biomed Eng. 38:2606–2620. doi:10.1007/s10439-010-0008-4.
  • Weydahl E, Moore, Jr., J. 2001. Dynamic curvature strongly affects wall shear rates in a coronary artery bifurcation model. J Biomech. 34:1189–1196. doi:10.1016/S0021-9290(01)00051-3.
  • Yang M, Taber L, Clark E. 1994. A nonliner poroelastic model for the trabecular embryonic heart. J Biomech Eng. 116:213–223. doi:10.1115/1.2895722.
  • Zeng D, Boutsianis E, Ammann M, Boomsma K, Wildermuth S, Poulikakos D. 2008. A study on the compliance of a right coronary artery and its impact on wall shear stress. J Biomech Eng. 130:041014–11. doi:10.1115/1.2937744.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.