259
Views
4
CrossRef citations to date
0
Altmetric
Articles

Improving anterior deltoid activity in a musculoskeletal shoulder model – an analysis of the torque-feasible space at the sternoclavicular joint

, , , &
Pages 450-463 | Received 27 Jan 2015, Accepted 15 Apr 2015, Published online: 09 Jul 2015

References

  • Aeberhard M, Michellod Y, Mullhaupt P, Terrier A, Pioletti D, Gillet D. 2009. Dynamical biomechanical model of the shoulder: Null space based optimization of the overactuated system. In: IEEE international conference on robotics and biomimetics (ROBIO) 2008. February. p. 67–73.
  • Audenaert A, Audenaert E. 2008. Global optimization method for combined spherical-cylindrical wrapping in musculoskeletal upper limb modelling. Computer Methods Programs Biomed. 92(1):8–19. doi:10.1016/j.cmpb.2008.05.005.
  • Ball SR. 1876. Theory of Screws: a study in the dynamics of a rigid body. Dublin: Hodges Publication.
  • Baumgarte J. 1983. A new method of stabilization for holonomic constraints. J Appl Mech. 50(4a):869–870. doi:10.1115/1.3167159.
  • Bergmann G, Graichen F, Bender A, Kääb M, Rohlmann A, Westerhoff P. 2007. In vivo glenohumeral contact forces-measurements in the first patient 7 months postoperatively. J Biomech. 40(10):2139–2149. doi:10.1016/j.jbiomech.2006.10.037.
  • Bosscher P, Riechel A, Ebert-Uphoff I. 2006. Wrench-feasible workspace generation for cable-driven robots. Rob IEEE Trans. 22(5):890–902. doi:10.1109/TRO.2006.878967.
  • Klein Breteler MD, Spoor C, van derHelm F. 1999. Measuring muscle and joint geometry parameters of a shoulder for modeling purposes. J Biomech. 32(11):1191–1197. doi:10.1016/S0021-9290(99)00122-0.
  • Carman A, Milburn P. 2005. Dynamic coordinate data for describing muscle–tendon paths: a mathematical approach. J Biomech. 38(4):943–951. doi:10.1016/j.jbiomech.2004.03.017.
  • Charlton I, Johnson G. 2006. A model for the prediction of the forces at the glenohumeral joint. In: Proceedings of the institution of mechanical engineers [H]. 220. p. 801–812. doi:10.1243/09544119JEIM147.
  • Chu A, Hughes R. 2010. A method to determine whether a musculoskeletal model can resist arbitrary external loadings within a prescribed range. Comput Methods Biomech Biomed Eng. 13(6):795–802. doi:10.1080/10255841003630629.
  • Damsgaard M, Rasmussen J, Christensen S, Surma E, De Zee M. 2006. Analysis of musculoskeletal systems in the AnyBody Modeling System. Simul Model Pract Theory. 14(8):1100–1111. doi:10.1016/j.simpat.2006.09.001.
  • Delp S, Loan J, Hoy M, Zajac F, Topp E, Rosen J. 1990. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans Biomed Eng. 37(8):757–767. doi:10.1109/10.102791.
  • Desailly E, Sardain P, Khouri N, Yepremian D, Lacouture P. 2010. The convex wrapping algorithm: a method for identifying muscle paths using the underlying bone mesh. J Biomech. 43(13):2601–2607. doi:10.1016/j.jbiomech.2010.05.005.
  • Dickerson C, Chaffin D, Hughes R. 2007. A mathematical musculoskeletal shoulder model for proactive ergonomic analysis. Comput Methods Biomech Biomed Eng. 10(6):389–400. doi:10.1080/10255840701592727.
  • El Habachi A, Duprey S, Cheze L, Dumas R. 2014. Springer Netherlands; a parallel mechanism of the shoulder—application to multi-body optimisation. Multibody Sys Dyn. 33(4):1–13.
  • Engelhardt C, Ingram D, Muellhaupt P, Pralong E, Farron A, Pioletti D, Terrier A. 2012. Solving overconstrained kinematic in numerical shoulder model using nullspace optimization. In: 10th international symposium on computer methods in biomechanics and biomedical engineering, (CMBBE) 2012 Berlin. April.
  • Erdemir A, McLean S, Herzog W, van denBogert A. 2007. Model-based estimation of muscle forces exerted during movements. Clin Biomech. 22(2):131–154. doi:10.1016/j.clinbiomech.2006.09.005.
  • Escamilla R, Yamashiro K, Paulos L, Andrews J. 2009. Shoulder muscle activity and function in common shoulder rehabilitation exercises. Sports Med. 39(8):663–685. doi:10.2165/00007256-200939080-00004.
  • Favre P, Snedeker J, Gerber C. 2009. Numerical modelling of the shoulder for clinical applications. Philos Trans Ser A Math Phys Eng Sci. 367(1895):2095–2118. doi:10.1098/rsta.2008.0282.
  • Garner B, Pandy M. 1999. A kinematic model of the upper limb based on the visible human project (VHP) image dataset. Comput Methods Biomech Biomed Eng. 2(2):107–124. doi:10.1080/10255849908907981.
  • Garner B, Pandy M. 2000. The obstacle-set method for representing muscle paths in musculoskeletal models. Comput Meth Biomech Biomed Eng. 3(1):1–30. doi:10.1080/10255840008915251.
  • Garner B, Pandy M. 2001. Musculoskeletal model of the upper limb based on the visible human male dataset. Comput Methods Biomech Biomed Eng. 4(2):93–126. doi:10.1080/10255840008908000.
  • Gouttefarde M, Merlet JP, Daney D. 2007. Wrench-feasible workspace of parallel cable-driven mechanisms. In: IEEE international conference on robotics and automation, 2007. p. 1492–1497.
  • Gouttefarde M, Daney D, Merlet JP. 2011. Interval-analysis-based determination of the wrench-feasible workspace of parallel cable-driven robots. IEEE Trans Rob. 27(1):1–13. doi:10.1109/TRO.2010.2090064.
  • Grunbaum B. 2003. Convex Polytopes. 2nd ed. New York, NY: Spinrger-Verlag.
  • Hand L, Finch J. 1998. Analytical Mechanics. New York, NY: Cambridge University Press.
  • Holzbaur KRS, Murray WM, Delp SL. 2005. A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control. Ann Biomed Eng. 33(6):829–840. doi:10.1007/s10439-005-3320-7.
  • Högfors C, Peterson B, Herberts P. 1987. Biomechanical model of the human shoulder-I. Elements. J Biomech. 20(2):157–166.
  • Högfors C, Peterson B, Sigholm G, Herberts P. 1991. Biomechanical model of the human shoulder-II. The shoulder ryrthm. J Biomech. 24(8):699–709.
  • Ingram D, Müllhaupt P, Terrier A, Pralong E, Farron A. 2012. Dynamical biomechanical model of the shoulder for muscle-force estimation. In: IEEE international conference on biomedical robotics and biomechatronics (BIOROB) 2012. June.
  • Ingram D, Engelhardt C, Farron A, Terrier A, Müllhaupt P. 2013a. A minimal set of coordinates for describing humanoid shoulder motion. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), 2013. p. 5537–5544.
  • Ingram D, Engelhardt C, Farron A, Terrier A, Müllhaupt P. 2013b. Muscle moment-arms: a key element in muscle-force estimation. Comput Methods Biomech Biomed Eng. :1–8.
  • Karlsson D, Peterson B. 1992. Towards a model for force predictions in the human shoulder. J Biomech. 25(2):189–199. doi:10.1016/0021-9290(92)90275-6.
  • Lemieux P, Hagemeister N, Tétreault P, Nuño. 2013. Influence of the medial offset of the proximal humerus on the glenohumeral destabilising forces during arm elevation: a numerical sensitivity study. Comput Methods Biomech Biomed Eng. 16(1):103–111. doi:10.1080/10255842.2011.607813.
  • Makhsous M, Högfors C, Siemien'ski A, Peterson B. 1999. Total shoulder and relative muscle strength in the scapular plane. J Biomech. 32(11):1213–1220. doi:10.1016/S0021-9290(99)00049-4.
  • Masjedi M, Johnson G. 2010. Glenohumeral contact forces in reversed anatomy shoulder replacement. J Biomech. 43(13):2493–2500. doi:10.1016/j.jbiomech.2010.05.024.
  • Nikooyan A, Veeger H, Westerhoff P, Graichen F, Bergmann G, van derHelm F. 2010. Validation of the Delft Shoulder and Elbow Model using in-vivo glenohumeral joint contact forces. J Biomech. 43(15):3007–3014. doi:10.1016/j.jbiomech.2010.06.015.
  • Nof S. 1999. Handbook of industrial robotics. Vol. 1. New York, NY: John Wiley & Sons.
  • Poinsot ML. 1848. The elements of statics. (Translated from French). Cambridge: Cambridge University Press.
  • Poppen N, Walker P. 1978. Forces at the glenohumeral joint in abduction. J Clin Orthopedics. 135:165–170.
  • Prinold J, Masjedi M, Johnson G, Bull A. 2013. Musculoskeletal shoulder models: a technical review and proposals for research foci. J Eng Med. 227(10):1041–1057. doi:10.1177/0954411913492303.
  • Quental C, Folgado J, Ambrósio J, Monteiro J. 2012. A multibody biomechanical model of the upper limb including the shoulder girdle. Multibody Sys Dyn. 28(1–2):83–108. doi:10.1007/s11044-011-9297-0.
  • Quental C, Folgado J, Ambrósio J, Monteiro J. 2015. Critical analysis of musculoskeletal modelling complexity in multibody biomechanical models of the upper limb. Comput Methods Biomech Biomed Eng. 18(7):749–759. doi:10.1080/10255842.2013.845879.
  • Raikova R. 1992. A general approach for modelling and mathematical investigation of the human upper limb. J Biomech. 25(8):857–867. doi:10.1016/0021-9290(92)90226-Q.
  • Rasmussen J, Damsgaard M, Voigt M. 2001. Muscle recruitment by the min/max criterion — a comparative numerical study. J Biomech. 34(3):409–415. doi:10.1016/S0021-9290(00)00191-3.
  • Seireg A, Arvikar R. 1973. A mathematical model for evaluation of forces in lower extremeties of the musculo-skeletal system. J Biomech. 6(3):313–326. doi:10.1016/0021-9290(73)90053-5.
  • Sins L. 2014. Experimental and numerical study of anatomical total joint replacement of the shoulder École de Technologie Supérieure. Montréal, Canada.
  • Sternad D. 2008. Progress in motor control: a multidisciplinary perspective. New York, NY: Springer Science & Business Media.
  • Terrier A, Aeberhard M, Michellod Y, Mullhaupt P, Gillet D, Farron A, Pioletti D. 2010. A musculoskeletal shoulder model based on pseudo-inverse and null-space optimization. Medical Eng Phys. 32(9):1050–1056. doi:10.1016/j.medengphy.2010.07.006.
  • Terrier A, Reist A, Merlini F, Farron A. 2008. Simulated joint and muscle forces in reversed and anatomic shoulder prostheses. J Bone Joint Surg. 90-B(6):751–756. doi:10.1302/0301-620X.90B6.19708.
  • Valero-Cuevas F, Anand V, Saxena A, Lipson H. 2007. Beyond parameter estimation: extending biomechanical modeling by the explicit exploration of model topology. IEEE Trans Biomed Eng. 54(11):1951–1964. doi:10.1109/TBME.2007.906494.
  • Valero-Cuevas F, Zajac F, Burgar C. 1998. Large index-fingertip forces are produced by subject-independent patterns of muscle excitation. J Biomech. 31(8):693–703. doi:10.1016/S0021-9290(98)00082-7.
  • van der Helm F. 1994a. A finite element musculoskeletal model of the shoulder mechanism. J Biomech. 27(5):551–569. doi:10.1016/0021-9290(94)90065-5.
  • van der Helm F. 1994b. Analysis of the kinematic and dynamic behavior of the shoulder mechanism. J Biomech. 27(5):527–550. doi:10.1016/0021-9290(94)90064-7.
  • van der Helm F, Veenbaas R. 1991. Modelling the mechanical effect of muscles with large attachment sites: application to the shoulder mechanism. J Biomech. 24(12):1151–1163. doi:10.1016/0021-9290(91)90007-A.
  • Webb J. 2011. Contributions of the deltoid and rotator cuff to shoulder mobility and stability: a 3D finite element analysis. Stanford, CA: Stanford University.
  • Wu G, van der Helm FCT, (DirkJan) Veeger HEJ, Makhsous M, Van Roy P, Anglin C, Nagels J, Karduna AR, McQuade K, Wang X, et al. 2005. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—Part II: shoulder, elbow, wrist and hand. J Biomech. 38(5):981–992. doi:10.1016/j.jbiomech.2004.05.042.
  • Yanagawa T, Goodwin C, Shelburne K, Giphart J, Torry M, Pandy M. 2008. Contributions of the individual muscles of the shoulder to glenohumeral joint stability during abduction. J Biomech Eng. 130(2):1–9.
  • Yang J, Feng X, Kim J, Rajulu S. 2010. Review of biomechanical models for human shoulder complex. Int J Hum Factors Simul. 1(3):271–293. doi:10.1504/IJHFMS.2010.036791.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.