633
Views
26
CrossRef citations to date
0
Altmetric
Articles

Three-dimensional macro-scale assessment of regional and temporal wall shear stress characteristics on aortic valve leaflets

, &
Pages 603-613 | Received 30 Sep 2014, Accepted 14 May 2015, Published online: 08 Jul 2015

References

  • Atkins SK, Cao K, Rajamannan NM, Sucosky P. 2014. Bicuspid aortic valve hemodynamics induces abnormal medial remodeling in the convexity of porcine ascending aortas. Biomech Model Mechanobiol. 13(6):1209–1225. doi:10.1007/s10237-014-0567-7.
  • Balachandran K, Sucosky P, Yoganathan AP. 2011. Hemodynamics and mechanobiology of aortic valve inflammation and calcification. Int J Inflam. 2011:1–15. doi:10.4061/2011/263870.
  • Barker AJ, Markl M, Bürk J, Lorenz R, Bock J, Bauer S, Schulz-Menger J, von Knobelsdorff-Brenkenhoff F. 2012. Bicuspid aortic valve is associated with altered wall shear stress in the ascending aorta. Circ Cardiovasc Imaging. 5(4):457–466. doi:10.1161/CIRCIMAGING.112.973370.
  • Bellhouse BJ, Talbot L. 1969. The fluid mechanics of the aortic valve. J Fluid Mech. 35(4):721–735. doi:10.1017/S0022112069001406.
  • Billiar KL, Sacks MS. 2000. Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp – Part I: experimental results. J Biomech Eng. 122(1):23–30. doi:10.1115/1.429624.
  • Butcher JT, Simmons CA, Warnock JN. 2008. Mechanobiology of the aortic heart valve. J Heart Valve Dis. 17:62–73.
  • Chandra S, Rajamannan NM, Sucosky P. 2012. Computational assessment of bicuspid aortic valve wall-shear stress: implications for calcific aortic valve disease. Biomech Model Mechanobiol. 11(7):1085–1096. doi:10.1007/s10237-012-0375-x.
  • Chandran K, Rittgers S, Yoganathan A. 2007. Biofluid mechanics: the human circulation. Boca Raton, FL: CRC Press/Taylor and Francis.
  • Dasi LP, Sucosky P, de Zelicourt D, Sundareswaran K, Jimenez J, Yoganathan AP. 2009. Advances in cardiovascular fluid mechanics: bench to bedside. Ann N Y Acad Sci. 1161(1):1–25. doi:10.1111/j.1749-6632.2008.04320.x.
  • De Hart J, Baaijens FP, Peters GW, Schreurs PJ. 2003. A computational structure interaction analysis of a fiber-reinforced stentless aortic valve. J Biomech. 36(5):699–712. doi:10.1016/S0021-9290(02)00448-7.
  • De Hart J, Peters GWM, Schreurs PJG, Baaijens FPT. 2000. A two-dimensional fluid–structure interaction model of the aortic valve. J Biomech. 33(9):1079–1088. doi:10.1016/S0021-9290(00)00068-3.
  • De Hart J, Peters GWM, Schreurs PJG, Baaijens FPT. 2003. A three-dimensional computational analysis of fluid–structure interaction in the aortic valve. J Biomech. 36(1):103–112. doi:10.1016/S0021-9290(02)00244-0.
  • Donea J, Giuliani S, Halleux JP. 1982. An arbitrary Lagrangian–Eulerian finite element method for transient dynamic fluid–structure interactions. Comput Methods Appl Mech Eng. 33(1–3):689–723. doi:10.1016/0045-7825(82)90128-1.
  • Ge L, Sotiropoulos F. 2010. Direction and magnitude of blood flow shear stresses on the leaflets of aortic valves: is there a link with valve calcification? J Biomech Eng. 132(1):014505. doi:10.1115/1.4000162.
  • Grande KJ, Cochran RP, Reinhall PG, Kunzelman KS. 1998. Stress variations in the human aortic root and valve: the role of anatomic asymmetry. Ann Biomed Eng. 26(4):534–545. doi:10.1114/1.122.
  • Hoehn D, Sun L, Sucosky P. 2010. Role of pathologic shear stress alterations in aortic valve endothelial activation. Cardiovasc Eng Technol. 1(2):165–178. doi:10.1007/s13239-010-0015-5.
  • Kilner PJ, Yang GZ, Wilkes AJ, Mohiaddin RH, Firmin DN, Yacoub MH. 2000. Asymmetric redirection of flow through the heart. Nature. 404(6779):759–761. doi:10.1038/35008075.
  • Ku DN. 1997. Blood flow in arteries. Annu Rev Fluid Mech. 29(1):399–434. doi:10.1146/annurev.fluid.29.1.399.
  • Lantz J, Renner J, Karlsson M. 2011. Wall shear stress in a subject specific human aorta – influence of fluid–structure interaction. Int J Appl Mech. 03(4):759–778. doi:10.1142/S1758825111001226.
  • Leo HL, Dasi LP, Carberry J, Simon HA, Yoganathan AP. 2006. Fluid dynamic assessment of three polymeric heart valves using particle image velocimetry. Ann Biomed Eng. 34(6):936–952. doi:10.1007/s10439-006-9117-5.
  • Marom G, Peleg M, Halevi R, Rosenfeld M, Raanani E, Hamdan A, Haj-Ali R. 2013. Fluid–structure interaction model of aortic valve with porcine-specific collagen fiber alignment in the cusps. J Biomech Eng. 135(10):101001–101006. doi:10.1115/1.4024824.
  • Merryman WD. 2010. Mechano-potential etiologies of aortic valve disease. J Biomech. 43(1):87–92. doi:10.1016/j.jbiomech.2009.09.013.
  • Missirlis YF, Chong M. 1978. Aortic valve mechanics – Part I: material properties of natural porcine aortic valves. J Bioeng. 2:287–300.
  • Moore B, Dasi LP. 2014. Spatiotemporal complexity of the aortic sinus vortex. Exp Fluids. 55(7):1770. doi:10.1007/s00348-014-1770-0.
  • Nicosia MA, Cochran RP, Einstein DR, Rutland CJ, Kunzelman KS. 2003. A coupled fluid–structure finite element model of the aortic valve and root. J Heart Valve Dis. 12:781–789.
  • Sacks MS, Yoganathan AP. 2007. Heart valve function: a biomechanical perspective. Philos Trans R Soc London Ser B Biol Sci. 362(1484):1369–1391. doi:10.1098/rstb.2007.2122.
  • Seaman C, Akingba AG, Sucosky P. 2014. Steady flow hemodynamic and energy loss measurements in normal and simulated calcified tricuspid and bicuspid aortic valves. J Biomech Eng. 136(4)–11. doi:10.1115/1.4026575.
  • Seaman C, McNally A, Biddle S, Jankowski L, Sucosky P. 2015. Generation of simulated calcific lesions in valve leaflets for flow studies. J Heart Valve Dis. 24:1–11.
  • Stalder AF, Frydrychowicz A, Russe MF, Korvink JG, Hennig J, Li K, Markl M. 2011. Assessment of flow instabilities in the healthy aorta using flow-sensitive MRI. J Magn Reson Imaging. 33(4):839–846. doi:10.1002/jmri.22512.
  • Sturla F, Votta E, Stevanella M, Conti CA, Redaelli A. 2013. Impact of modeling fluid–structure interaction in the computational analysis of aortic root biomechanics. Med Eng Phys. 35(12):1721–1730. doi:10.1016/j.medengphy.2013.07.015.
  • Sucosky P. 2014. Hemodynamic mechanisms of bicuspid aortic valve calcification and aortopathy. In: Rajamannan N, editor. Molecular biology of valvular heart disease. London: Springer; p. 81–94.
  • Sucosky P, Balachandran K, Elhammali A, Jo H, Yoganathan AP. 2009. Altered shear stress stimulates upregulation of endothelial VCAM-1 and ICAM-1 in a BMP-4- and TGF-β1-dependent pathway. Arterioscler Thromb Vasc Biol. 29(2):254–260. doi:10.1161/ATVBAHA.108.176347.
  • Sucosky P, Rajamannan NM. 2013. Bicuspid aortic valve disease: from bench to bedside. In: Rajamannan N, editor. Cardiac valvular medicine. London: Springer; p. 17–21.
  • Sun L, Chandra S, Sucosky P, Aikawa E, Sun L, Chandra S, Sucosky P. 2012. Ex vivo evidence for the contribution of hemodynamic shear stress abnormalities to the early pathogenesis of calcific bicuspid aortic valve disease. PLoS One. 7(10):e48843. doi:10.1371/journal.pone.0048843.
  • Sun L, Rajamannan NM, Sucosky P, Aikawa E, Sun L, Rajamannan N, Sucosky P. 2013. Defining the role of fluid shear stress in the expression of early signaling markers for calcific aortic valve disease. PLoS One. 8(12):e84433. doi:10.1371/journal.pone.0084433.
  • Thubrikar M. 1990. The aortic valve. Boca Raton, FL: CRC Press.
  • Vigmostad SC, Udaykumar HS, Lu J, Chandran KB. 2010. Fluid–structure interaction methods in biological flows with special emphasis on heart valve dynamics. Int J Numer Method Biomed Eng. 26(3–4):435–470. doi:10.1002/cnm.1340.
  • Weinberg EJ, Kaazempur Mofrad MR. 2007. Transient, three-dimensional, multiscale simulations of the human aortic valve. Cardiovasc Eng. 7(4):140–155. doi:10.1007/s10558-007-9038-4.
  • Weinberg EJ, Schoen FJ, Mofrad MRK, Capogrossi M. 2009. A computational model of aging and calcification in the aortic heart valve. PLoS One. 4(6):e5960. doi:10.1371/journal.pone.0005960.
  • Weston MW, LaBorde DV, Yoganathan AP. 1999. Estimation of the shear stress on the surface of an aortic valve leaflet. Ann Biomed Eng. 27(4):572–579. doi:10.1114/1.199.
  • Yap CH, Saikrishnan N, Tamilselvan G, Yoganathan AP. 2012. Experimental measurement of dynamic fluid shear stress on the aortic surface of the aortic valve leaflet. Biomech Model Mechanobiol. 11(1–2):171–182. doi:10.1007/s10237-011-0301-7.
  • Yap CH, Saikrishnan N, Yoganathan AP. 2012. Experimental measurement of dynamic fluid shear stress on the ventricular surface of the aortic valve leaflet. Biomech Model Mechanobiol. 11(1–2):231–244. doi:10.1007/s10237-011-0306-2.
  • Yoganathan AP, He Z, Casey Jones S. 2004. Fluid mechanics of heart valves. Annu Rev Biomed Eng. 6(1):331–362. doi:10.1146/annurev.bioeng.6.040803.140111.
  • Zhou YQ, Faerestrand S, Matre K, Birkeland S. 1993. Velocity distributions in the left ventricular outflow tract and the aortic anulus measured with Doppler colour flow mapping in normal subjects. Eur Heart J. 14(9):1179–1188. doi:10.1093/eurheartj/14.9.1179.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.