257
Views
11
CrossRef citations to date
0
Altmetric
Articles

Imaging analysis of collagen fiber networks in cusps of porcine aortic valves: effect of their local distribution and alignment on valve functionality

, , , , &
Pages 1002-1008 | Received 20 Jan 2015, Accepted 25 Aug 2015, Published online: 25 Sep 2015

References

  • Balguid A, Driessen NJ, Mol A, Schmitz JP, Verheyen F, Bouten CV, Baaijens FP. 2008. Stress related collagen ultrastructure in human aortic valves–implications for tissue engineering. J Biomech. 41:2612–2617.10.1016/j.jbiomech.2008.06.031
  • Billiar K, Sacks M. 2000. Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp-part I: experimental results. J Biomech. 122:23–30.10.1115/1.429624
  • Cacciola G, Peters GW, Schreurs PJ. 2000. A three-dimensional mechanical analysis of a stentless fibre-reinforced aortic valve prosthesis. J Biomech. 33:521–530.10.1016/S0021-9290(99)00222-5
  • Chandran KB, Kim SH, Han G. 1991. Stress distribution on the cusps of a polyurethane trileaflet heart valve prosthesis in the closed position. J Biomech. 24:385–395.10.1016/0021-9290(91)90027-K
  • Conti CA, Della Corte A, Votta E, Del Viscovo L, Bancone C, De Santo LS, Redaelli A. 2010. Biomechanical implications of the congenital bicuspid aortic valve: a finite element study of aortic root function from in vivo data. J Thorac Cardiovasc Surg. 140:890–896.e2.10.1016/j.jtcvs.2010.01.016
  • De Hart J, Cacciola G, Schreurs PJ, Peters GW. 1998. A three-dimensional analysis of a fibre-reinforced aortic valve prosthesis. J Biomech. 31:629–638.10.1016/S0021-9290(98)00063-3
  • De Hart J, Peters GW, Schreurs PJ, Baaijens FP. 2004. Collagen fibers reduce stresses and stabilize motion of aortic valve leaflets during systole. J Biomech. 37:303–311.10.1016/S0021-9290(03)00293-8
  • Driessen NJ, Bouten CV, Baaijens FP. 2005. Improved prediction of the collagen fiber architecture in the aortic heart valve. J Biomech Eng. 127:329–336.10.1115/1.1865187
  • Grande KJ, Cochran RP, Reinhall PG, Kunzelman KS. 1998. Stress variations in the human aortic root and valve: the role of anatomic asymmetry. Ann Biomed Eng. 26:534–545.10.1114/1.122
  • Gundiah N, Kam K, Matthews PB, Guccione J, Dwyer HA, Saloner D, Chuter TA, Guy TS, Ratcliffe MB, Tseng EE. 2008. Asymmetric mechanical properties of porcine aortic sinuses. Ann Thorac Surg. 85:1631–1638.10.1016/j.athoracsur.2008.01.035
  • Haj-Ali R, Marom G, Ben Zekry S, Rosenfeld M, Raanani E. 2012. A general three-dimensional parametric geometry of the native aortic valve and root for biomechanical modeling. J Biomech. 45:2392–2397.10.1016/j.jbiomech.2012.07.017
  • Higashidate M, Tamiya K, Kurosawa H, Imai Y. 1992. Role of the septal leaflet in tricuspid valve closure. Consideration for treatment of complete atrioventricular canal. J Thorac Cardiovasc Surg. 104:1212–1217.
  • Jermihov PN, Jia L, Sacks MS, Gorman RC, Gorman JH 3rd, Chandran KB. 2011. Effect of geometry on the leaflet stresses in simulated models of congenital bicuspid aortic valves. Cardiovasc Eng Technol. 2:48–56.10.1007/s13239-011-0035-9
  • Kim H, Lu J, Sacks MS, Chandran KB. 2008. Dynamic simulation of bioprosthetic heart valves using a stress resultant shell model. Ann Biomed Eng. 36:262–275.10.1007/s10439-007-9409-4
  • Kim HS. 2009. Nonlinear multi-scale anisotropic material and structural models for prosthetic and native aortic heart valves. Atlanta (GA): Georgia Institute of Technology.
  • Liu Y, Kasyanov V, Schoephoerster RT. 2007. Effect of fiber orientation on the stress distribution within a leaflet of a polymer composite heart valve in the closed position. J Biomech. 40:1099–1106.10.1016/j.jbiomech.2006.04.015
  • Loerakker S, Argento G, Oomens CW, Baaijens FP. 2013. Effects of valve geometry and tissue anisotropy on the radial stretch and coaptation area of tissue-engineered heart valves. J Biomech. 46:1792–1800.10.1016/j.jbiomech.2013.05.015
  • Marom G. 2014. Numerical methods for fluid–structure interaction models of aortic valves. Arch Computat Methods Eng. DOI: https://doi.org/10.1007/s11831-014-9133-9, Epub 2 Oct 2014.
  • Marom G, Haj-Ali R, Raanani E, Schäfers HJ, Rosenfeld M. 2012. A fluid-structure interaction model of the aortic valve with coaptation and compliant aortic root. Med Biol Eng Comput. 50:173–182.10.1007/s11517-011-0849-5
  • Marom G, Kim H, Rosenfeld M, Raanani E, Haj-Ali R. 2013a. Fully coupled fluid-structure interaction model of congenital bicuspid aortic valves: effect of asymmetry on hemodynamic. Med Biol Eng Comput. 51:839–848.
  • Marom G, Peleg M, Halevi R, Rosenfeld M, Raanani E, Hamdan A, Haj-Ali R. 2013b. Fluid-structure interaction model of aortic valve with porcine-specific collagen fiber alignment in the cusps. J Biomech Eng. 135:101001–101006.10.1115/1.4024824
  • Missirlis YF, Chong M. 1978. Aortic valve mechanics–part I: material properties of natural porcine aortic valves. J Bioeng. 2:287–300.
  • Nicosia MA, Cochran RP, Einstein DR, Rutland CJ, Kunzelman KS. 2003. A coupled fluid-structure finite element model of the aortic valve and root. J Heart Valve Dis. 12:781–789.
  • Robinson PS, Johnson SL, Evans MC, Barocas VH, Tranquillo RT. 2008. Functional tissue-engineered valves from cell-remodeled fibrin with commissural alignment of cell-produced collagen. Tissue Eng Part A. 14:83–95.
  • Rock CA, Han L, Doehring TC. 2014. Complex collagen fiber and membrane morphologies of the whole porcine aortic valve. PLoS One. 9:e86087.10.1371/journal.pone.0086087
  • Sabbah HN, Hamid MS, Stein PD. 1986. Mechanical stresses on closed cusps of porcine bioprosthetic valves: correlation with sites of calcification. Ann Thorac Surg. 42:93–96.10.1016/S0003-4975(10)61845-0
  • Sacks MS, Smith DB, Hiester ED. 1998. The aortic valve microstructure: effects of transvalvular pressure. J Biomed Mater Res. 41:131–141.10.1002/(ISSN)1097-4636
  • Stella JA, Liao J, Sacks MS. 2007. Time-dependent biaxial mechanical behavior of the aortic heart valve leaflet. J Biomech. 40:3169–3177.10.1016/j.jbiomech.2007.04.001
  • Sun W, Sacks MS. 2005. Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues. Biomech Model Mechanobiol. 4:190–199.10.1007/s10237-005-0075-x
  • Sun W, Sacks MS, Sellaro TL, Slaughter WS, Scott MJ. 2003. Biaxial mechanical response of bioprosthetic heart valve biomaterials to high in-plane shear. J Biomech Eng. 125:372–380.10.1115/1.1572518
  • Weinberg EJ, Mofrad MRK. 2007. Transient, three-dimensional, multiscale simulations of the human aortic valve. Cardiovasc Eng. 7:140–155.10.1007/s10558-007-9038-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.