203
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Three-dimensional modeling of the cochlea by use of an arc fitting approach

, , , &
Pages 1785-1799 | Received 20 Apr 2015, Accepted 09 May 2016, Published online: 09 Aug 2016

References

  • Autodesk Inventor. 2014. Loft feature. Available from: http://knowledge.autodesk.com/support
  • Avci E, Nauwelaers T, Lenarz T, Hamacher V, Kral A. 2014. Variations in microanatomy of the human cochlea. J Comp Neurology. 522:3245–3261.
  • Adunka O, Unkelbach M, Mack M, Radeloff A, Gstoettner W. 2005. Predicting basal cochlear length for electric-acoustic stimulation. Arch Otolaryngology Head Neck Surg. 131:488–492.
  • Becker M, Kirschner M, Sakas G, 2014. Segmentation of risk structures for otologic surgery using the probabilistic active shape model (PASM). Proceedings of SPIE 9036, medical imaging 2014: image-iuided procedures, robotic interventions, and modeling; 2014 Mar 12; San Diego, CA, USA. 90360O
  • Bekesy G. 1960. Experiments in hearing. Ann Arbor (MI): McGraw.
  • Biedron S. 2008. Untersuchung der cochleären Mikromorphologie und des Querschnitts der cochleären Gänge unter Berücksichtigung der Entstehung von Insertionsschäden bei der Cochlea-Elektroden-Insertion [Investigation of the cochlear micro morphology and the cross section of the cochlear lumina regarding the generation of trauma during cochlear electrode insertion] [dissertation, in German]. Aachen (Germany): Rheinisch-Westflische Technische Hochschule Aachen university.
  • Braun K, Bhnke F, Stark T. 2012. Three-dimensional representation of the human cochlea using micro-computed tomography data: presenting an anatomical model for further numerical calculations. Acta Otolaryngol. 132:603–613.
  • Buytaert JAN, Johnson SB, Dierick M, Salih WHM, Santi PA. 2013. MicroCT versus sTSLIM 3D imaging of the mouse cochlea. J Histochem Cytochem. 61:382–395.
  • Chen BK, Kha HN, Clark GM. 2007. Development of a steerable cochlear implant electrode array. IFMBE Proceedings. 15:607–610.
  • Clark JR, Warren FM, Abbott JJ, 2011. A scalable model for human scala-tympani phantoms. J Med Dev. 5: 014501. Available from: http://www.telerobotics.utah.edu/index.php/Research/CochlearImplants.
  • Cohen LT, Xu J, Xu SA, Clark GM. 1996. Improved and simplified methods for specifying positions of the electrode bands of a cochlear implant array. Am J Otol. 17:859–865.
  • Escude B, James C, Deguine O, Cochard N, Eter E, Fraysse B. 2006. The size of the cochlea and predictions of insertion depth angles for cochlear implant electrodes. Audiology Neuro-Otol. 11:27–33.
  • Fowler DR, Meinhardt H, Prusinkiewicz P. 1992. Modeling seashells. Comput Graphics. 26:379–387.
  • Gan RZ, Reeves BP, Wang X. 2007. Modeling of sound transmission from ear canal to cochlea. Ann Biomed Eng. 35:2180–2195.
  • Givelberg E, Rajan M, Bunn J. 2001. Detailed simulation of the cochlea: recent progress using large shared memory parallel computers [technical report]. Ann Arbor (MI): University of Michigan.
  • Givelberg E, Bunn J. 2003. A comprehensive three-dimensional model of the cochlea. J Comput Phys. 191:377–391.
  • Givelberg E, Bunn J. 2004. Computational experiments with a three-dimensional model of the cochlea [technical report]. Berkeley (CA): University of California.
  • Gulya AJ, Steenerson RL. 1996. The scala vestibuli for cochlear implantation. An anatomic study. Arch Otolaryngology Head Neck Surg. 122:130–132.
  • Hatsuchika S, Shepherd RK, Tong YC, Clark GM, Funasaka S. 1990. Dimensions of the scala tympani in the human and cat with reference to cochlear implants. Ann Otol Rhinol Laryngol. 99:871–876.
  • Kasa I. 1976. A circle fitting procedure and its error analysis. IEEE Trans Instrum Meas. 25:8–14.
  • Ketten DR, Skinner MW, Wang G, Vannier MW, Gates GA, Neely JG. 1998. In vivo measures of cochlear length and insertion depth of nucleus cochlear implant electrode arrays. Ann Otol Rhinol Laryngol. 107:1–16.
  • Kha HN, Chen BK, Clark GM. 2007. 3D finite element analyses of insertion of the nucleus standard straight and the contour electrode arrays into the human cochlea. J Biomech. 40:2796–2805.
  • Kontorinis G, Scheper V, Wissel K, Stver T, Lenarz T, Paasche G. 2012. In vitro modifications of the scala tympani environment and the cochlear implant array surface. Laryngoscope. 122:2057–2063.
  • Lee CF, Li GJ, Wan SY, Lee WJ, Tzen KY, Chen CH, Song YL, Chou YF, Chen YS, Liu TC. 2010. Registration of micro-computed tomography and histological images of the Guinea pig cochlea to construct an ear model using an iterative closest point algorithm. Ann Biomed Eng. 38:1719–1727.
  • LexowGJ. SchurzigD. GellrichNC. LenarzT. MajdaniO. RauTS 2016. Visualization, measurement and modelling of the cochlea using rotating midmodiolar slice planes. Int J Comput Assist Radiol Surg. Epub 2016. doi: 10.1007/s11548-016-1374-7.
  • Li SF, Zhang TY, Wang MW. 2006. An approach for precise three-dimensional modeling of the human inner ear. J Oto-Rhino-Laryngology Head Neck Surg. 68:302–310.
  • Lorbeer R, Heidrich M, Lorbeer C, Ojeda DR, Bicker G, Meyer H, Heisterkamp A. 2011. Highly efficient 3D fluorescence microscopy with a scanning laser optical tomograph. Opt Express. 19:5419–5430.
  • Majdani O, Schurzig D, Hussong A, Rau T, Wittkopf J, Lenarz T, Labadie RF. 2010. Force measurement of insertion of cochlear implant electrode arrays in vitro: comparison of surgeon to automated insertion tool. Acta Otolaryngol. 130:31–36.
  • Noble JH, Dawant BM, Warren FM, Labadie RF. 2009. Automatic identification and 3D rendering of temporal bone anatomy. Otol Neurotol. 30:436–442.
  • Noble JH, Labadie RF, Gifford RH, Dawant BM. 2013. Image-guidance enables new methods for customizing cochlear implant stimulation strategies. IEEE Trans Neural Syst rehabil Eng. 21:820–829.
  • Poznyakovskiy AA, Zahnert T, Kalaidzidis Y, Schmidt R, Fischer B, Baumgart J, Yarin YM. 2008. The creation of geometric three-dimensional models of the inner ear based on micro computer tomography data. Hear Res. 243:95–104.
  • Rau TS, Hussong A, Leinung M, Lenarz T, Majdani O. 2010. Automated insertion of preformed cochlear implant electrodes: evaluation of curling behaviour and insertion forces on an artificial cochlear model. Int J Comput Assist Radiol Surg. 5:173–081.
  • Rebscher SJ, Heilmann M, Bruszewski W, Talbot NH, Snyder RL, Merzenich MM. 1999. Strategies to improve electrode positioning and safety in cochlear implants. IEEE Trans Biomed Eng. 46:340–052.
  • Rebscher SJ, Hetherington A, Bonham B, Wardrop P, Whinney D, Leake PA. 2008. Considerations for design of future cochlear implant electrode arrays: electrode array stiffness, size, and depth of insertion. J Rehabil Res Dev. 45:731–748.
  • Santi PA, Rapson I, Voie A. 2008. Development of the mouse cochlea database (MCD). Hear Res. 243:11–17.
  • Takahashi H, Sando I. 1990. Computer-aided 3-D temporal bone anatomy for cochlear implant surgery. Laryngoscope. 100:417–421.
  • Tinz L. 2005. Drei-dimensionale Rekonstruktion des menschlichen Mittel- und Innenohres [Three dimensional reconstruction of the human middle and inner ear] [dissertation, in German]. Munich (Germany): Technische Universit\"{a}t M\"{u}nchen.
  • Verbist BM, Ferrarini L, Briaire JJ, Zarowski A, Admiraal-Behloul F, Olofsen H, Reiber JHC, Frijns JHM. 2009. Anatomic considerations of cochlear morphology and its implications for insertion trauma in cochlear implant surgery. Otol Neurotol. 30:471–477.
  • Wysocki J. 1999. Dimensions of the human vestibular and tympanic scalae. Hear Res. 135:39–46.
  • Xu J, Xu SA, Cohen LT, Clark GM. 2000. Cochlear view: postoperative radiography for cochlear implantation. Am J Otol. 21:49–56.
  • Yoo SK, Wang G, Rubinstein JT, Skinner MW, Vannier MW. 2000. Three-dimensional modeling and visualization of the cochlea on the Internet. IEEE Trans Inf Technol Biomed. 4:144–151.
  • Yoo SK, Wang G, Rubinstein JT, Vannier MW. 2000. Three-dimensional geometric modeling of the cochlea using helico-spiral approximation. IEEE Trans Biomed Eng. 47:1392–1402.
  • Zhang J, Roland JT, Manolidis S, Simaan N. 2009. Optimal path planning for robotic insertion of steerable electrode arrays in cochlear implant surgery. J Med Dev. 3:011001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.