526
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

The use of XFEM to assess the influence of intra-cortical porosity on crack propagation

, &
Pages 385-392 | Received 29 Feb 2016, Accepted 07 Sep 2016, Published online: 22 Sep 2016

References

  • Abaqus 6.12 documentation. 2012. Providence, RI: Simulia, Dassault Systemes.
  • Abdel-Wahab AA, Maligno AR, Silberschmidt VV. 2012. Micro-scale modelling of bovine cortical bone fracture: analysis of crack propagation and microstructure using X-FEM. Comput Mater Sci. 52:128–135. doi:10.1016/j.commatsci.2011.01.021
  • Belytschko T, Black T. 1999. Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng. 45:601–620. doi:10.1002/(SICI)1097-0207(19990620)45:5<601:AID-NME598>3.0.CO;2-S
  • Besdo S, Vashishth D. 2012. Extended finite element models of intracortical porosity and heterogeneity in cortical bone. Comput Mater Sci. 64:301–305. doi:10.1016/j.commatsci.2012.04.018
  • Budyn É, Hoc T. 2007. Multiple scale modeling for cortical bone fracture in tension using X-FEM. Eur J Comput Mech Eur Mécanique Numér. 16:213–236. doi:10.3166/remn.16.213-236
  • Budyn E, Hoc T, Jonvaux J. 2008. Fracture strength assessment and aging signs detection in human cortical bone using an X-FEM multiple scale approach. Comput Mech. 42:579–591. doi:10.1007/s00466-008-0283-1
  • Buehler MJ. 2007. Molecular nanomechanics of nascent bone: fibrillar toughening by mineralization. Nanotechnology. 18:295102–295111. doi:10.1088/0957-4484/18/29/295102
  • Carriero A, Bruse JL, Oldknow kJ, Millán JL, Farquharson C, Shefelbine SJ. 2014. Reference point indentation is not indicative of whole mouse bone measures of stress intensity fracture toughness. Bone. 69:174–179. doi:10.1016/j.bone.2014.09.020
  • Carriero A, Doube M, Vogt M, Busse B, Zustin J, Levchuk A, Schneider P, Müller R, Shefelbine SJ. 2014. Altered lacunar and vascular porosity in osteogenesis imperfecta mouse bone as revealed by synchrotron tomography contributes to bone fragility. Bone. 61:116–124. doi:10.1016/j.bone.2013.12.020
  • Carriero A, Zimmermann EA, Paluszny A, Tang SY, Bale H, Busse B, Alliston T, Kazakia G, Ritchie RO, Shefelbine SJ. 2014. How tough is brittle bone? Investigating osteogenesis imperfecta in mouse bone. J Bone Miner Res. 29:1392–1401. doi:10.1002/jbmr.2172
  • Carriero A, Zimmermann EA, Shefelbine SJ, Ritchie RO. 2014. A methodology for the investigation of toughness and crack propagation in mouse bone. J Mech Behav Biomed Mater. 39:38–47. doi:10.1016/j.jmbbm.2014.06.017
  • Christen D, Levchuk A, Schori S, Schneider P, Boyd SK, Müller R. 2012. Deformable image registration and 3D strain mapping for the quantitative assessment of cortical bone microdamage. J Mech Behav Biomed Mater. 8:184–193. doi:10.1016/j.jmbbm.2011.12.009
  • Donaldson F, Ruffoni D, Schneider P, Levchuk A, Zwahlen A, Pankaj P, Müller R. 2014. Modeling microdamage behavior of cortical bone. Biomech Model Mechanobiol. 13:1227–1242. doi:10.1007/s10237-014-0568-6
  • Feerick EM, Liu XC, McGarry P. 2013. Anisotropic mode-dependent damage of cortical bone using the extended finite element method (XFEM). J Mech Behav Biomed Mater. 20:77–89. doi:10.1016/j.jmbbm.2012.12.004
  • Fries T-P, Belytschko T. 2010. The extended/generalized finite element method: an overview of the method and its applications. Int J Numer Methods Eng. 84:253–304. doi:10.1002/nme.2914
  • Gao X, Li S, Adel-Wahab A, Silberschmidt V. 2013. Effect of random microstructure on crack propagation in cortical bone tissue under dynamic loading. J Phys Conf Ser. 451:012033–012041. doi:10.1088/1742-6596/451/1/012033
  • Gupta HS, Krauss S, Kerschnitzki M, Karunaratne A, Dunlop JWC, Barber AH, Boesecke P, Funari SS, Fratzl P. 2013. Intrafibrillar plasticity through mineral/collagen sliding is the dominant mechanism for the extreme toughness of antler bone. J Mech Behav Biomed Mater. 28:366–382. doi:10.1016/j.jmbbm.2013.03.020
  • Haboussa D, Grégoire D, Elguedj T, Maigre H, Combescure A. 2011. X-FEM analysis of the effects of holes or other cracks on dynamic crack propagations. Int J Numer Methods Eng. 86:618–636. doi:10.1002/nme.3128
  • Jiang S, Du C, Gu C, Chen X. 2014. XFEM analysis of the effects of voids, inclusions and other cracks on the dynamic stress intensity factor of a major crack. Fatigue Fract Eng Mater Struct. 37:866–882. doi:10.1111/ffe.12150
  • Karihaloo BL, Xiao QZ. 2003. Modelling of stationary and growing cracks in FE framework without remeshing: a state-of-the-art review. Comput Struct. 81:119–129. doi:10.1016/S0045-7949(02)00431-5
  • Launey ME, Buehler MJ, Ritchie RO. 2010. On the mechanistic origins of toughness in bone. Annu Rev Mater Res. 40:25–53. doi:10.1146/annurev-matsci-070909-104427
  • Li S, Abdel-Wahab A, Demirci E, Silberschmidt VV. 2013. Fracture process in cortical bone: X-FEM analysis of microstructured models. Int J Fract. 184:43–55. doi:10.1007/s10704-013-9814-7
  • Li S, Abdel-Wahab A, Silberschmidt VV. 2013. Analysis of fracture processes in cortical bone tissue. Eng Fract Mech. 110:448–458. doi:10.1016/j.engfracmech.2012.11.020
  • Mischinski S, Ural A. 2011. Finite Element Modeling of Microcrack Growth in Cortical Bone. J Appl Mech. 78:041016–041016. doi:10.1115/1.4003754
  • Moës N, Belytschko T. 2002. Extended finite element method for cohesive crack growth. Eng Fract Mech. 69:813–833. doi:10.1016/S0013-7944(01)00128-X
  • Moës N, Dolbow J, Belytschko T. 1999. A finite element method for crack growth without remeshing. Int J Numer Methods Eng. 46:131–150. doi:10.1002/(SICI)1097-0207(19990910)46:1<131:AID-NME726>3.0.CO;2-J
  • Nalla RK, Kruzic JJ, Kinney JH, Ritchie RO. 2005. Mechanistic aspects of fracture and R-curve behavior in human cortical bone. Biomaterials. 26:217–231. doi:10.1016/j.biomaterials.2004.02.017
  • O’Brien FJ, Taylor D, Clive Lee T. 2005. The effect of bone microstructure on the initiation and growth of microcracks. J Orthop Res. 23:475–480. doi:10.1016/j.orthres.2004.08.005
  • Remmers JJC, de Borst R, Needleman A. 2003. A cohesive segments method for the simulation of crack growth. Comput Mech. 31:69–77. doi:10.1007/s00466-002-0394-z
  • Ritchie RO, Buehler MJ, Hansma P. 2009. Plasticity and toughness in bone. Phys Today. 62:41–47. doi:10.1063/1.3156332
  • Rodriguez-Florez N, Garcia-Tunon E, Mukadam Q, Saiz E, Oldknow kJ, Farquharson C, Millán JL, Boyde A, Shefelbine SJ. 2015. An investigation of the mineral in ductile and brittle cortical mouse bone. J Bone Miner Res. 30:786–795. doi:10.1002/jbmr.2414
  • Singh IV, Mishra BK, Bhattacharya S. 2011. XFEM simulation of cracks, holes and inclusions in functionally graded materials. Int J Mech Mater Des. 7:199–218. doi:10.1007/s10999-011-9159-1
  • Sukumar N, Moës N, Moran B, Belytschko T. 2000. Extended finite element method for three-dimensional crack modelling. Int J Numer Methods Eng. 48:1549–1570. doi:10.1002/1097-0207(20000820)48:11<1549:AID-NME955>3.0.CO;2-A
  • Taylor D, Hazenberg JG, Lee TC. 2007. Living with cracks: damage and repair in human bone. Nat Mater. 6:263–268. doi:10.1038/nmat1866
  • Turnbull TL, Baumann AP, Roeder RK. 2014. Fatigue microcracks that initiate fracture are located near elevated intracortical porosity but not elevated mineralization. J Biomech. 47:3135–3142. doi:10.1016/j.jbiomech.2014.06.022
  • Ural A, Vashishth D. 2014. Hierarchical perspective of bone toughness – from molecules to fracture. Int Mater Rev. 59:245–263. doi:10.1179/1743280414Y.0000000031
  • Vanleene M, Porter A, Guillot P-V, Boyde A, Oyen M, Shefelbine S. 2012. Ultra-structural defects cause low bone matrix stiffness despite high mineralization in osteogenesis imperfecta mice. Bone. 50:1317–1323. doi:10.1016/j.bone.2012.03.007
  • Vergani L, Colombo C, Libonati F. 2014. Crack propagation in cortical bone: a numerical study. Procedia Mater Sci. 3:1524–1529. doi:10.1016/j.mspro.2014.06.246
  • Voide R, Schneider P, Stauber M, van Lenthe GH, Stampanoni M, Müller R. 2011. The importance of murine cortical bone microstructure for microcrack initiation and propagation. Bone. 49:1186–1193. doi:10.1016/j.bone.2011.08.011
  • Wang R, Gupta HS. 2011. Deformation and fracture mechanisms of bone and nacre. Annu Rev Mater Res. 41:41–73. doi:10.1146/annurev-matsci-062910-095806
  • Yazid A, Abdelkader N, Abdelmadjid H. 2009. A state-of-the-art review of the X-FEM for computational fracture mechanics. Appl Math Model. 33:4269–4282. doi:10.1016/j.apm.2009.02.010
  • Yeni YN, Brown CU, Wang Z, Norman TL. 1997. The influence of bone morphology on fracture toughness of the human femur and tibia. Bone. 21:453–459. doi:10.1016/S8756-3282(97)00173-7
  • Zimmermann EA, Gludovatz B, Schaible E, Busse B, Ritchie RO. 2014. Fracture resistance of human cortical bone across multiple length-scales at physiological strain rates. Biomaterials. 35:5472–5481. doi:10.1016/j.biomaterials.2014.03.066
  • Zimmermann EA, Schaible E, Bale H, Barth HD, Tang SY, Reichert P, Busse B, Alliston T, Ager JW, Ritchie RO. 2011. Age-related changes in the plasticity and toughness of human cortical bone at multiple length scales. Proc Natl Acad Sci. doi:10.1073/pnas.1107966108

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.