516
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Two-dimensional intraventricular flow pattern visualization using the image-based computational fluid dynamics

, , &
Pages 492-507 | Received 16 Feb 2016, Accepted 17 Oct 2016, Published online: 31 Oct 2016

References

  • Annerel S, Claessens T, Taelman L, Degroote J, Van Nooten G, Verdonck P, Segers P, Vierendeels J. 2014. Influence of valve size, orientation and downstream geometry of an aortic BMHV on leaflet motion and clinically used valve performance parameters. Ann Biomed Eng. Sep 4;43:1–15.
  • Arefin MS, Morsi YS. 2014. Fluid structure interaction (FSI) simulation of the left ventricle (LV) during the early filling wave (E-wave), diastasis and atrial contraction wave (A-wave). Australas Phys Eng Sci Med. Feb 26;37:1–11.
  • Bermejo J, Martínez-Legazpi P, del Álamo JC. 2015. The clinical assessment of intraventricular flows. Annu Rev Fluid Mech. 47:315–342.10.1146/annurev-fluid-010814-014728
  • Chan BT, Lim E, Ong CW, Abu Osman NA. 2013. Effect of spatial inlet velocity profiles on the vortex formation pattern in a dilated left ventricle. Comput Methods Biomech Biomed Eng. 18:1–7.
  • Chnafa C, Mendez S, Nicoud F. 2014. Image-based large-eddy simulation in a realistic left heart. Comput Fluids. May 1;94:173–187.10.1016/j.compfluid.2014.01.030
  • Choi Y, Vedula V, Mittal R. 2014. Computational study of the dynamics of a bileaflet mechanical heart valve in the mitral position. Ann Biomed Eng. Apr 29;42:1–13.
  • Corsini C, Baker C, Kung E, Schievano S, Arbia G, Baretta A, Biglino G, Migliavacca F, Dubini G, Pennati G, et al. 2013. An integrated approach to patient-specific predictive modeling for single ventricle heart palliation. Comput Methods Biomech Biomed Eng. [2014 Oct 26];17:1572–1589.
  • Dahl SK, Vierendeels J, Degroote J, Annerel S, Hellevik LR, Skallerud B. 2010. FSI simulation of asymmetric mitral valve dynamics during diastolic filling. Comput Methods Biomech Biomed Eng. [2012 Feb 1];15:121–130.
  • de Vecchi A, Gomez A, Pushparajah K, Schaeffter T, Nordsletten DA, Simpson JM, Penney GP, Smith NP. 2014. Towards a fast and efficient approach for modelling the patient-specific ventricular haemodynamics. Prog Biophys Mol Biol. Sep;116:3–10.10.1016/j.pbiomolbio.2014.08.010
  • de Vecchi A, Nordsletten DA, Razavi R, Greil G, Smith NP. 2013. Patient specific fluid–structure ventricular modelling for integrated cardiac care. Med Biol Eng Comput. Nov 1;51:1261–1270.10.1007/s11517-012-1030-5
  • Doenst T, Spiegel K, Reik M, Markl M, Hennig J, Nitzsche S, Beyersdorf F, Oertel H. 2009. Fluid-dynamic modeling of the human left ventricle: methodology and application to surgical ventricular reconstruction. Ann Thoracic Surg. Apr;87:1187–1195.10.1016/j.athoracsur.2009.01.036
  • Doost SN, Ghista D, Su B, Zhong L, Morsi YS. 2016. Heart blood flow simulation: a perspective review. BioMed Eng OnLine. 15:1–28.
  • Doost S, Zhong L, Su B, Morsi Y. 2015. The influence of non-Newtonian characteristics of blood on the patient-specific left ventricle. Proceedings of the Australian Biomedical Engineering Conference (ABEC 2015); 2015 Nov 22–25; Engineers Australia.
  • Doost SN, Zhong L, Su B, Morsi YS. 2016. The numerical analysis of non-Newtonian blood flow in human patient-specific left ventricle. Comput Methods Program Biomed. Apr;127:232–247.10.1016/j.cmpb.2015.12.020
  • Elbaz M, Calkoen E, Westenberg J, Lelieveldt B, Roest A, van der Geest R. 2014. Vortex flow during early and late left ventricular filling in normal subjects: quantitative characterization using retrospectively-gated 4D flow cardiovascular magnetic resonance and three-dimensional vortex core analysis. J Cardiovasc Magn Reson. Sep 27;16:1–12.
  • Gharaie SH, Morsi Y. 2015. A novel design of a polymeric aortic valve. Int J Artif Organs. 38:259–270.10.5301/ijao.5000413
  • Heiberg E, Wigstrom L, Carlsson M, Bolger AF, Karlsson M. 2005. Time resolved three-dimensional automated segmentation of the left ventricle. In: Proceedings of the Computers in Cardiology. Sep 25–28. Lyon, France: IEEE.
  • Heiberg E, Sjögren J, Ugander M, Carlsson M, Engblom H, Arheden H. 2010. Design and validation of segment – freely available software for cardiovascular image analysis. BMC Med Imaging. 10:594–13.10.1186/1471-2342-10-1
  • Hu Y, Shi L, Du D, Parameswaran S, He Z. 2011. An elongation model of left ventricle deformation in diastole. Comput Methods Biomech Biomed Eng. [2013 Jan 1];16:66–72.
  • Khalafvand SS, Ng EYK, Zhong L. 2011. CFD simulation of flow through heart: a perspective review. Comput Methods Biomech Biomed Eng. Feb 1;14:113–132.10.1080/10255842.2010.493515
  • Khalafvand SS, Ng EYK, Zhong L. 2012. Three-dimensional MRI-based computational fluid modeling of the left ventricle for patient before and after surgical ventricular restoration. In: Proceedings of the Biomedical Engineering and Biotechnology (iCBEB), 2012 International Conference on. Macau, China: IEEE.
  • Khalafvand SS, Ng EYK, Zhong L, Hung TK. 2012. Fluid-dynamics modelling of the human left ventricle with dynamic mesh for normal and myocardial infarction: preliminary study. Comput Biol Med. Aug;42:863–870.10.1016/j.compbiomed.2012.06.010
  • Khalafvand SS, Zhong L, Ng EYK. 2014. Three-dimensional CFD/MRI modeling reveals that ventricular surgical restoration improves ventricular function by modifying intraventricular blood flow. Int J Numer Methods Biomed Eng. 30:1044–1056.10.1002/cnm.v30.10
  • Krittian S, Janoske U, Oertel H, Böhlke T. 2010. Partitioned fluid–solid coupling for cardiovascular blood flow. Ann Biomed Eng. Apr 1;38:1426–1441.10.1007/s10439-009-9895-7
  • Lassila TM, Malossi ACI, Stevanella M, Deparis S, Votta E, Redaelli A. 2012. Multiscale fluid–structure interaction simulation of anatomically correct left ventricle fluid dynamics with fictitious elastic structure regularization. (EPFL-REPORT-181237). Lausanne, Switzerland: Wiley InterScience.
  • Le TB, Sotiropoulos F. 2012. On the three-dimensional vortical structure of early diastolic flow in a patient-specific left ventricle. Eur J Mech B Fluids. Sep;35:20–24.10.1016/j.euromechflu.2012.01.013
  • Le TB, Sotiropoulos F. 2013. Fluid–structure interaction of an aortic heart valve prosthesis driven by an animated anatomic left ventricle. J Comput Phys. Jul 1;244:41–62.10.1016/j.jcp.2012.08.036
  • Lemmon JD, Yoganathan AP. 2000. Three-dimensional computational model of left heart diastolic function with fluid–structure interaction. J Biomech Eng. 122:109-117.
  • Liang F, Taniguchi H, Liu H. 2007. A multi-scale computational method applied to the quantitative evaluation of the left ventricular function. Comput Biol Med. May;37:700-715.10.1016/j.compbiomed.2006.06.011
  • Long Q, Merrifield R, Xu X, Kilner P, Firmin D, Yang G. 2008. Subject-specific computational simulation of left ventricular flow based on magnetic resonance imaging. Proc Inst Mech Eng Part H: J Eng Med. 222:475–485.10.1243/09544119JEIM310
  • Long Q, Merrifield R, Yang GZ, Xu XY, Kilner PJ, Firmin DN. 2004. The influence of inflow boundary conditions on intra left ventricle flow predictions. J Biomech Eng. 125:922–927.
  • Mangual JO, Domenichini F, Pedrizzetti G. 2012. Three dimensional numerical assessment of the right ventricular flow using 4D echocardiography boundary data. Eur J Mech B Fluids. Sep;35:25–30.
  • Mangual JO, Kraigher-Krainer E, De Luca A, Toncelli L, Shah A, Solomon S, Galanti G, Domenichini F, Pedrizzetti G. 2013. Comparative numerical study on left ventricular fluid dynamics after dilated cardiomyopathy. J Biomech. Jun 21;46:1611–1617.10.1016/j.jbiomech.2013.04.012
  • Mihalef V, Ionasec RI, Sharma P, Georgescu B, Voigt I, Suehling M, Comaniciu D. 2011. Patient-specific modelling of whole heart anatomy, dynamics and haemodynamics from four-dimensional cardiac CT images. Interface Focus. 1:286–296.10.1098/rsfs.2010.0036
  • Moosavi M-H, Fatouraee N, Katoozian H, Pashaei A, Camara O, Frangi AF. 2012. Numerical simulation of blood flow in the left ventricle and aortic sinus using magnetic resonance imaging and computational fluid dynamics. Comput Methods Biomech Biomed Eng. 2014 May 19;17:740–749.
  • Nakamura M, Wada S, Yamaguchi T. 2006a. Computational analysis of blood flow in an integrated model of the left ventricle and the aorta. J Biomech Eng. 128:837–843.
  • Nakamura M, Wada S, Yamaguchi T. 2006b. Influence of the opening mode of the mitral valve orifice on Intraventricular hemodynamics. Ann Biomed Eng. Jun 1;34:927–935.10.1007/s10439-006-9127-3
  • Nezamidoost S, Sadeghy K. 2012. Peristaltic pumping of thixotropic fluids: a numerical study. Nihon Reoroji Gakkaishi. 40:1–9.10.1678/rheology.40.1
  • Nezamidoost S, Sadeghy K, Askari V. 2013. Pulsatile flow of thixotropic fluids through a partially-constricted tube. Nihon Reoroji Gakkaishi. 41:45–52.10.1678/rheology.41.45
  • Nguyen V-T, Loon CJ, Nguyen HH, Liang Z, Leo HL. 2013. A semi-automated method for patient-specific computational flow modelling of left ventricles. Comput Methods Biomech Biomed Eng. 18:1–13.
  • Pedrizzetti G, Domenichini F. 2005. Nature optimizes the swirling flow in the human left ventricle. Phys Rev Lett. Sep 2;95:108101–108104.
  • Saber N, Gosman AD, Wood N, Kilner P, Charrier C, Firmin D. 2001. Computational flow modeling of the left ventricle based on in vivo MRI data: initial experience. Ann Biomed Eng. Apr 1;29:275–283.10.1114/1.1359452
  • Saber N, Wood N, Gosman AD, Merrifield R, Yang G-Z, Charrier C, Gatehouse P, Firmin D. 2003. Progress towards patient-specific computational flow modeling of the left heart via combination of magnetic resonance imaging with computational fluid dynamics. Ann Biomed Eng. Jan 1;31:42–52.10.1114/1.1533073
  • Schenkel T, Malve M, Reik M, Markl M, Jung B, Oertel H. 2009. MRI-based CFD analysis of flow in a human left ventricle: methodology and application to a healthy heart. Ann Biomed Eng. Mar 1;37:503–515.10.1007/s10439-008-9627-4
  • Sengupta PP, Pedrizzetti G, Kilner PJ, Kheradvar A, Ebbers T, Tonti G, Fraser AG, Narula J. 2012. Emerging trends in CV flow visualization. JACC: Cardiovasc Imaging. Mar;5:305–316.
  • Seo JH, Mittal R. 2013. Effect of diastolic flow patterns on the function of the left ventricle. Phys Fluids (1994–present). 25:1–21.
  • Seo JH, Vedula V, Abraham T, Lardo AC, Dawoud F, Luo H, Mittal R. 2014. Effect of the mitral valve on diastolic flow patterns. Phys Fluids. 26:121901–121914.
  • Su B, Kabinejadian F, Phang HQ, Kumar GP, Cui F, Kim S, Tan RS, Hon JKF, Allen JC, Leo HL, et al. 2015. Numerical modeling of intraventricular flow during diastole after Implantation of BMHV. PLoS ONE. May 11;10:e0126315/0126311–0126316.
  • Su B, Zhang J-M, Tang HC, Wan M, Lim CCW, Su Y, Zhao X, Tan RS, Zhong L. 2014. Patient-specific blood flows and vortex formations in patients with hypertrophic cardiomyopathy using computational fluid dynamics. Proceedings of the Biomedical Engineering and Sciences (IECBES); 2014 Dec 8–10. Sarawak, Malaysia: IEEE.
  • Su B, Zhong L, Wang X-K, Zhang J-M, Tan RS, Allen JC, Tan SK, Kim S, Leo HL. 2014. Numerical simulation of patient-specific left ventricular model with both mitral and aortic valves by FSI approach. Comput Methods Programs Biomed. 113:474–482.10.1016/j.cmpb.2013.11.009
  • Su B, Tan RS, Tan JL, Guo KWQ, Zhang JM, Leng S, Zhao X, Allen JC, Zhong L. 2016. Cardiac MRI based numerical modeling of left ventricular fluid dynamics with mitral valve incorporated. J Biomech. May 3;49:1199–1205.10.1016/j.jbiomech.2016.03.008
  • Tazraei P, Riasi A. 2015. Quasi-two-dimensional numerical analysis of fast transient flows considering non-Newtonian effects. J Fluids Eng. 138:011203–011203.10.1115/1.4031093
  • Tazraei P, Riasi A, Takabi B. 2015. The influence of the non-Newtonian properties of blood on blood-hammer through the posterior cerebral artery. Math Biosci. 264:119–127.10.1016/j.mbs.2015.03.013
  • Wang X. 2008. Fundamentals of fluid–solid interactions: analytical and computational approaches. Amsterdam, The Netherlands: Elsevier Science.
  • Watanabe H, Sugiura S, Hisada T. 2008. The looped heart does not save energy by maintaining the momentum of blood flowing in the ventricle. Am J Physiol – Heart Circulat Physiol. May 1;294:H2191–H2196.10.1152/ajpheart.00041.2008
  • Yano T, Funayama M, Sudo S, Mitamura Y. 2012. Analysis of flow within a left ventricle model fully assisted With continuous flow through the aortic valve. Artif Organs. 36:714–723.10.1111/aor.2012.36.issue-8
  • Zheng X, Seo JH, Vedula V, Abraham T, Mittal R. 2012. Computational modeling and analysis of intracardiac flows in simple models of the left ventricle. Eur J Mech B Fluids. 35:31–39.10.1016/j.euromechflu.2012.03.002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.