666
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

The influence of biophysical muscle properties on simulating fast human arm movements

, , &
Pages 803-821 | Received 29 Jan 2016, Accepted 07 Feb 2017, Published online: 07 Apr 2017

References

  • Arnold E, Delp S. 2011. Fibre operating lengths of human lower limb muscles during walking. Philos Trans Roy Soc London Ser B, Biol Sci. 366:1530–1539.
  • Bizzi E, Accornero N, Chapple W, Hogan N. 1984. Posture control and trajectory formation during arm movement. J Neurosci. 4:2738–2744.
  • Bobbert MF. 2001. Dependence of human squat jump performance on the series elastic compliance of the triceps surae: a simulation study. J Exp Biol. 204:533–542.
  • Bobbert MF, VanIngenSchenau GJ. 1990. Isokinetic plantar flexion: experimental results and model calculations. J Biomech. 23:105–119.
  • Brown IE, Loeb GE. 2000. Measured and modeled properties of mammalian skeletal muscle: IV. Dynamics of activation and deactivation. J Muscle Res Cell Motil. 21:33–47.
  • Buhrmann T, Paolo EAD. 2014. Spinal circuits can accommodate interaction torques during multijoint limb movements. Front Comput Neurosci. 8:1–18.
  • Burkholder TJ, Lieber RL. 2001. Sarcomere length operating range of vertebrate muscles during movement. J Exp Biol. 204:1529–1536.
  • Daley MA, Voloshina A, Biewener AA. 2009. The role of intrinsic muscle mechanics in the neuromuscular control of stable running in the guinea fowl. J Physiol. 587:2693–2707.
  • Delp SL, Loan P, Hoy MG, Zajac FE, Topp EL, Rosen JM. 1990. An interactive graphics-based model of the lower extremity to study Orthopaedic Surgical Procedures. IEEE Trans Biomed Eng. 37:757–767.
  • Dickinson MH, Farley CT, Full RJ, Koehl MA, Kram R, Lehman S. 2000. How animals move: an integrative view. Science. 288:100–106.
  • Gerritsen KG, van den Bogert AJ, Hulliger M, Zernicke RF. 1998. Intrinsic muscle properties facilitate locomotor control - a computer simulation study. Motor Control. 2:206–220.
  • Giat Y. 1994. Simulation of distal tendon transfer of the biceps brachii and the brachialis muscles. J Biomech. 27:1005–1014.
  • Gomi H, Kawato M. 1997. Human arm stiffness and equilibrium-point trajectory during multi-joint movement. Biol Cybern. 76:163–171.
  • Gottlieb G. 1998. Muscle activation patterns during two types of voluntary single-joint movement. J Neurophysiol. 80:1860–1867.
  • Gribble PL, Ostry DJ, Sanguineti V, Laboissière R. 1998. Are complex control signals required for human arm movement? J Neurophysiol. 79:1409–1424.
  • Günther M, Schmitt S, Wank V. 2007. High-frequency oscillations as a consequence of neglected serial damping in Hill-type muscle models. Biol Cybern. 97:63–79.
  • Haeufle DFB, Grimmer S, Seyfarth A. 2010. The role of intrinsic muscle properties for stable hopping---stability is achieved by the force--velocity relation. Bioinspiration Biomimetics. 5:16004.
  • Haeufle DFB, Günther M, Bayer A, Schmitt S. 2014. Hill-type muscle model with serial damping and eccentric force-velocity relation. J Biomech. 47:1531–1536.
  • Hammerbeck U, Yousif N, Greenwood R, Rothwell JC, Diedrichsen J. 2014. Movement speed is biased by prior experience. J Neurophysiol. 111:128–134.
  • Hatze H. 1976. The complete optimization of human motion. Math Biosci. 28:99–135.
  • Hatze H. 1977. A myocybernetic control model of skeletal muscle. Biol Cybern. 25:103–119.
  • Holzbaur KRS, Murray WM, Delp SL. 2005. A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control. Ann Biomed Eng. 33:829–840.
  • Hoy MG, Zajac FE, Gordon ME. 1990. A musculoskeletal model of the human lower extermity: the effect of muscle, tendon, and moment arm in the moment-angle relationship of musculotendon actuators at the hip, knee, and ankle. J Biomech. 23:157–169.
  • John CT, Anderson FC, Higginson JS, Delp SL. 2013. Stabilisation of walking by intrinsic muscle properties revealed in a three-dimensional muscle-driven simulation. Comput Methods Biomech Biomed Eng. 16:451–462.
  • Kaminski TR, Gentile AM. 1989. A kinematic comparison of single and multijoint pointing movements. Exp Brain Res. 78:547–556.
  • van der Kamp W, Berardelli A, Rothwell JC, Thompson PD, Day BL, Marsden CD. 1989. Rapid elbow movements in patients with torsion dystonia. J Neurol Neurosurg Psychiatry. 52:1043–1049.
  • Kawato M, Maeda Y, Uno Y, Suzuki R. 1990. Trajectory formation of arm movement by cascade neural network model based on minimum torque-change criterion. Biol Cybern. 288:275–288.
  • Kistemaker DA, Van Soest AKJ, Bobbert MF. 2005. Length-dependent [Ca2+] sensitivity adds stiffness to muscle. J Biomech. 38:1816–1821.
  • Kistemaker DA, Van Soest AJ, Bobbert MF. 2006. Is equilibrium point control feasible for fast goal-directed single-joint movements? J Neurophysiol. 95:2898–2912.
  • Kistemaker DA, Van Soest AJ, Bobbert MF. 2007. A model of open-loop control of equilibrium position and stiffness of the human elbow joint. Biol Cybern. 96:341–350.
  • Klute GK, Czerniecki JM, Hannaford B. 2002. Artificial muscles: actuators for biorobotic systems. Int J Rob Res. 21:295–309.
  • Lehman S, Stark L. 1982. Three algorithms for interpreting differential equations: sensitivity coefficients, sensitivity functions, global optimization. Math Biosci. 62:107–122.
  • Lemay MA, Crago PE. 1996. A dynamic model for simulating movements of the elbow, forearm, and wrist. J Biomech. 29:1319–1330.
  • Maganaris CN. 2001. Force-length characteristics of in vivo human skeletal muscle. Acta Psychologica, 172(4): 279–285.
  • McMahon TA. 1984. Muscles, Reflexes, and Locomotion. Princeton, New Jersy.
  • Millard M, Uchida T, Seth A, Delp SL. 2013. Flexing computational muscle: modeling and simulation of musculotendon dynamics. J Biomech Eng. 135:021005.
  • Mörl F, Siebert T, Schmitt S, Blickhan R, Günther M. 2012. Electro-mechanical delay in Hill-type muscle models. J Mech Med Biol. 11:1319–1330.
  • Murray WM, Buchanan TS, Delp SL. 2000. The isometric functional capacity of muscles that cross the elbow. J Biomech. 33:943–952.
  • Murray WM, Buchanan TS, Delp SL. 2002. Scaling of peak moment arms of elbow muscles with upper extremity bone dimensions. J Biomech. 35:19–26.
  • Murray WM, Delp SL, Buchanan TS. 1995. Variation of muscle moment arms with elbow and forearm position. J Biomech. 28:513–525.
  • Nagasaki H. 1989. Asymmetric velocity and acceleration profiles of human arm movements. Exp Brain Res. 74:199–208.
  • Neptune RR, Kautz SA. 2001. Muscle activation and deactivation dynamics: the governing properties in fast cyclical human movement performance? Exercise Sport Sci Rev. 29:76–80.
  • Ostry D, Feldman A. 2003. A critical evaluation of the force control hypothesis in motor control. Exp Brain Res. 153:275–288.
  • Out L, Vrijkotte TGM, van Soest AJ, Bobbert MF. 1996. Influence of the Parameters of a Human Triceps Surae Muscle Model on the Isometric Torque-Angle Relationship. J Biomech Eng. 118:17–25.
  • Pigeon P, Yahia L, Feldman AG. 1996. Moment arms and lengths of human upper limb muscles as functions of joint angles. J Biomech. 29:1365–1370.
  • Pinter IJ, van Soest AJ, Bobbert MF, Smeets JBJ. 2012. Conclusions on motor control depend on the type of model used to represent the periphery. Biol Cybern. 106:441–451.
  • Popescu F, Hidler JM, Rymer WZ. 2003. Elbow impedance during goal-directed movements. Exp Brain Res. 152:17–28.
  • Rassier DE, MacIntosh BR, Herzog W. 1999. Length dependence of active force production in skeletal muscle. J Appl Physiol. 86:1445–1457.
  • Riener R, 1997. Neurophysiologische und biomechanische Modellierung zur Entwicklung geregelter Neuroprothesen [ PhD thesis]. Universtität München.
  • Rockenfeller R, Günther M. 2016. Extracting low-velocity concentric and eccentric dynamic muscle properties from isometric contraction experiments. Math Biosci. 278:77–93.
  • Rockenfeller R, Günther M. 2017. How to model a muscle’s active force-length relation: A comparative study. Comput Methods Appl Mech Eng. 313:321–336.
  • Rockenfeller R, Günther M, Schmitt S, Götz T. 2015. Comparative sensitivity analysis of muscle activation dynamics. Comput Math Methods Med. 585409.
  • Roszek B, Baan GC, Huijing PA. 1994. Decreasing stimulation frequency-dependent length-force characteristics of rat muscle. J Appl Physiol. 77:2115–2124.
  • Ruijven LJV, Weijs WA. 1990. Applied physiology SL measured. Eur J Appl Physiol. 61:479–485.
  • Scheidt RA, Rymer WZ. 2000. Control strategies for the transition from multi-joint to single-joint arm movements studied using a simple mechanical constraint. J Neurophysiol. 83:1–12.
  • Scovil CY, Ronsky JL. 2006. Sensitivity of a Hill-based muscle model to perturbations in model parameters. J Biomech. 39:2055–2063.
  • Siebert T, Leichsenring K, Rode C, Wick C, Stutzig N, Schubert H, Blickhan R, Böl M. 2015. Three-dimensional muscle architecture and comprehensive dynamic properties of rabbit gastrocnemius, plantaris and soleus: input for simulation studies. Plos One. 10:e0130985.
  • Siebert T, Rode C, Herzog W, Till O, Blickhan R. 2008. Nonlinearities make a difference: comparison of two common Hill-type models with real muscle. Biol Cybern. 98:133–143.
  • van Soest AJ, Bobbert MF. 1993. The contribution of muscle properties in the control of explosive movements. Biol Cybern. 69:195–204.
  • Stern JT. 1974. Computer modelling of gross muscle dynamics. J Biomech. 7:411–428.
  • Suzuki M, Shiller DM, Gribble PL, Ostry DJ. 2001. Relationship between cocontraction, movement kinematics and phasic muscle activity in single-joint arm movement. Exp Brain Res. 140:171–181.
  • Taga G. 1995. A model of the neuro-musculo-skeletal system for human locomotion. I. Emergence of basic gait. Biol Cybern. 73:97–111.
  • Wells JB. 1965. Comparison of mechanical properties between slow and fast mammalian muscles. J Physiol. 178:252–269.
  • Wiegner AW, Wierzbicka MM. 1992. Kinematic models and human elbow flexion movements: quantitative analysis. Exp Brain Res. 88:665–673.
  • Winter D. 2009. Biomechanics and Motor Control of Human Movement. 4th ed. Waterloo: John Wiley & Sons Ltd.
  • Winters JM. 1995. An improved muscle-reflex actuator for use in large-scale neuro-musculoskeletal models. Ann Biomed Eng. 23:359–374.
  • Winters JM, Stark L. 1985. Analysis of fundamental human movement patterns through the use of in-depth antagonistic muscle models. IEEE Trans Bio-Med Eng. 32:826–839.
  • Woittiez RD, Huijing PA, Boom HB, Rozendal RH. 1984. A three-dimensional muscle model: a quantified relation between form and function of skeletal muscles. J Morphol. 182:95–113.
  • Zajac FE. 1989. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng. 17:359–411.
  • van Zandwijk JP, Bobbert MF, Baan GC, Huijing PA. 1996. From twitch to tetanus: performance of excitation dynamics optimized for a twitch in predicting tetanic muscle forces. Biol Cybern. 75:409–417.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.