215
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Recirculation zone length in renal artery is affected by flow spirality and renal-to-aorta flow ratio

, &
Pages 980-990 | Received 11 Nov 2016, Accepted 12 Apr 2017, Published online: 24 Apr 2017

References

  • Albert S, Balaban RS, Neufeld EB, Rossmann JS. 2014. Influence of the renal artery ostium flow diverter on hemodynamics and atherogenesis. J Biomech. 47:1594–1602.10.1016/j.jbiomech.2014.03.006
  • Bluestein D, Niu LJ, Schoephoerster RT, Dewanjee MK. 1997. Fluid mechanics of arterial stenosis: relationship to the development of mural thrombus. Ann Biomed Eng. 25:344–356.10.1007/BF02648048
  • Bluestein D, Gutierrez C, Londono M, Schoephoerster RT. 1999. Vortex sheddingin steady flow through a model of an arterial stenosis and its relevanceto mural platelet deposition. Ann Biomed Eng. 27:763–773.10.1114/1.230
  • Cheer AY, Dwyer HA, Barakat AI, Sy E, Bice M. 1998. Computational study of the effect of geometric and flow parameters on the steady flow field at the rabbit aorto-celiac bifurcation. Biorheology. 35:415–435.10.1016/S0006-355X(99)80020-1
  • Dubel GJ, Murphy TP. 2008. The role of percutaneous revascularization for renal artery stenosis. Vasc Med. 13:141–156.10.1177/1358863x07085408
  • Elkayam U, Gardin JM, Berkley R, Hughes CA, Henry WL. 1983. The use of Doppler flow velocity measurement to assess the hemodynamic response to vasodilators in patients with heart failure. Circulation. 67:377–383.10.1161/01.CIR.67.2.377
  • Glagov S, Zarins C, Giddens D, Ku DN. 1988. Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries. Arch Pathol Lab Med. 1112:1018–1031.
  • Ha H, Lee S-J. 2014. Effect of swirling inlet condition on the flow field in a stenosed arterial vessel model. Med Eng Phys. 36:119–128.10.1016/j.medengphy.2013.10.008
  • Haga T, Javadzadegan A, Kabir K, Simmons A, Barber T. 2015. Particle image velocimetry study of aorta-renal bifurcation. Technol Health Care. 23:539–545.10.3233/THC-151005
  • Hassani K, Navidbakhsh M, Rostami M. 2007. Modeling of the aorta artery aneurysms and renal artery stenosis using cardiovascular electronic system. Biomed Eng Online. 6:22.10.1186/1475-925X-6-22
  • Javadzadegan A, Simmons A, Barber T. 2016. Spiral blood flow in aorta-renal bifurcation models. Comput Methods Biomech Biomed Eng. 19:964–976.10.1080/10255842.2015.1082552
  • Javadzadegan A, Simmons A, Behnia M, Barber T. 2017. Computational modelling of abdominal aortic aneurysms: Effect of suprarenal vs. infrarenal positions. Eur J Mech B/Fluids. 61:112–124.10.1016/j.euromechflu.2016.09.018
  • Kaatee R, Beek FJ, Verschuyl EJ, vd Ven PJ, Beutler JJ, van Schaik JP, Mali WP. 1996. Atherosclerotic renal artery stenosis: ostial or truncal? Radiology. 199:637–640.10.1148/radiology.199.3.8637979
  • Kagadis GC, Skouras ED, Bourantas GC, Paraskeva CA, Katsanos K, Karnabatidis D, Nikiforidis GC. 2008. Computational representation and hemodynamic characterization of in vivo acquired severe stenotic renal artery geometries using turbulence modeling. Med Eng Phys. 30:647–660.10.1016/j.medengphy.2007.07.005
  • Ku DN, Glagov S, Moore JE Jr, Zarins CK. 1989. Flow patterns in the abdominal aorta under simulated postprandial and exercise conditions: An experimental study. J Vasc Surg. 9:309–316.10.1016/0741-5214(89)90051-7
  • Kwon GP, Schroeder JL, Amar MJ, Remaley AT, Balaban RS. 2008. Contribution of macromolecular structure to the retention of low-density lipoprotein at arterial branch points. Circulation. 117:2919–2927.10.1161/CIRCULATIONAHA.107.754614
  • Liepsch D, Poll A, Strigberger J, Sabbah HN, Stein PD. 1989. Flow visualization studies in a mold of the normal human aorta and renal arteries. J Biomech Eng. 111:222–227.10.1115/1.3168369
  • Linge F, Hye MA, Paul MC. 2014. Pulsatile spiral blood flow through arterial stenosis. Comput Methods Biomech Biomed Eng. 17:1727–1737.10.1080/10255842.2013.765411
  • Lou Z, Yang WJ. 1993. A computer simulation of the non-Newtonian blood flow at the aortic bifurcation. J Biomech. 26:37–49.10.1016/0021-9290(93)90611-H
  • Maier SE, Meier D, Boesiger P, Moser UT, Vieli A. 1989. Human abdominal aorta: comparative measurements of blood flow with MR imaging and multigated Doppler US. Radiology. 171:487–492.10.1148/radiology.171.2.2649924
  • McDonald D. 1960. Blood flow in arteries. Baltimore (MD): Wilkins & Wilkins.
  • Morbiducci U, Ponzini R, Rizzo G, Cadioli M, Esposito A, Montevecchi FM, Redaelli A. 2011. Mechanistic insight into the physiological relevance of helical blood flow in the human aorta: an in vivo study. Biomech Model Mechanobiol. 10:339–355.
  • Nguyen ND, Haque AK. 1990. Effect of hemodynamic factors on atherosclerosis in the abdominal aorta. Atherosclerosis. 84:33–39.10.1016/0021-9150(90)90005-4
  • Olin J, Melia M, Young J, Graor R, Risius B. 1990. Prevalence of atherosclerotic renal artery stenosis in patients with atherosclerosis elsewhere. Am J Med. 88:46N–51N.
  • Paul MC, Larman A. 2009. Investigation of spiral blood flow in a model of arterial stenosis. Med Eng Phys. 31:1195–1203.10.1016/j.medengphy.2009.07.008
  • Sabbah HN, Hawkins ET, Stein PD. 1984. Flow separation in the renal arteries. Arterioscler Thromb Vasc Biol. 4:28–33.10.1161/01.ATV.4.1.28
  • Safian RD, Textor SC. 2001. Renal-artery stenosis. N Engl J Med. 344:431–442.10.1056/NEJM200102083440607
  • Segalova PA, Venkateswara Rao KT, Zarins CK, Taylor CA. 2012. Computational modeling of shear-based hemolysis caused by renal obstruction. J Biomech Eng. 134:021003.10.1115/1.4005850
  • Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA. 2006. Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput Methods Appl Mech Eng. 195:3776–3796.10.1016/j.cma.2005.04.014
  • Wilcox DC. 1993. Turbulence Modelling for CFD. La Canada (CA): DCW Industries.
  • Yamamoto T, Ogasawara Y, Kimura A, Tanaka H, Hiramatsu O, Tsujioka K, Lever MJ, Parker KH, Jones CJ, Caro CG, Kajiya F. 1996. Blood velocity profiles in the human renal artery by Doppler ultrasound and their relationship to atherosclerosis. Thromb Vasc Biol. 16:172–177.10.1161/01.ATV.16.1.172
  • Yim PJ, Cebral JR, Weaver A, Lutz RJ, Soto O, Vasbinder GB, Ho VB, Choyke PL. 2004. Estimation of the differential pressure at renal artery stenoses. Magn Reson Med. 51:969–977.10.1002/(ISSN)1522-2594
  • Zhang W, Qian Y, Lin J, Lv P, Karunanithi K, Zeng M. 2014. Hemodynamic analysis of renal artery stenosis using computational fluid dynamics technology based on unenhanced steady-state free precession magnetic resonance angiography: preliminary results. Int J Cardiovasc Imaging. 30:367–375.10.1007/s10554-013-0345-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.