291
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Statistical factorial analysis approach for parameter calibration on material nonlinearity of intervertebral disc finite element model

&
Pages 1066-1076 | Received 27 Jan 2017, Accepted 13 May 2017, Published online: 22 May 2017

References

  • Cappetti N, Naddeo A, Naddeo F, Solitro GF. 2016. Finite elements/Taguchi method based procedure for the identification of the geometrical parameters significantly affecting the biomechanical behavior of a lumbar disc. Comput Methods Biomech Biomed Eng. 19:1278–1285.10.1080/10255842.2015.1128529
  • Dar FH, Meakin JR, Aspden RM. 2002. Statistical methods in finite element analysis. J Biomech. 35:1155–1161.10.1016/S0021-9290(02)00085-4
  • Eberlein R, Holzapfel GA, Schulze-Bauer CAJ. 2001. An anisotropic model for annulus tissue and enhanced finite element analyses of intact lumbar disc bodies. Comput Methods Biomech Biomed Eng. 4:209–229.10.1080/10255840108908005
  • Ezquerro F, Vacas FG, Postigo S, Prado M, Simón A. 2011. Calibration of the finite element model of a lumbar functional spinal unit using an optimization technique based on differential evolution. Med Eng Phys. 33:89–95.10.1016/j.medengphy.2010.09.010
  • Fagan MJ, Julian S, Siddall DJ, Mohsen AM. 2002. Patient-specific spine models. Part 1: finite element analysis of the lumbar intervertebral disc – a material sensitivity study. J Eng Med. 216:299–314.10.1243/09544110260216577
  • Goel VK, Monroe BT, Gilbertson LG, Brinckmann P. 1995. Interlaminar shear stresses and laminae separation in a disc. Finite element analysis of the L3–L4 motion segment subjected to axial compressive loads. Spine (Phila Pa 1976). 20:689–698.
  • Grosland NM, Shivanna KH, Magnotta VA, Kallemeyn NA, DeVries NA, Tadepalli SC, Lisle C. 2009. IA-FEMesh: an open-source, interactive, multiblock approach to anatomic finite element model development. Comput Methods Programs Biomed. 94:96–107.10.1016/j.cmpb.2008.12.003
  • Heuer F, Schmidt H, Claes L, Wilke HJ. 2007. Stepwise reduction of functional spinal structures increase vertebral translation and intradiscal pressure. J Biomech. 40:795–803.10.1016/j.jbiomech.2006.03.016
  • Heuer F, Schmidt H, Klezl Z, Claes L, Wilke H-J. 2007. Stepwise reduction of functional spinal structures increase range of motion and change lordosis angle. J Biomech. 40:271–280.10.1016/j.jbiomech.2006.01.007
  • Holzapfel GA, Schulze-Bauer CAJ, Feigl G, Regitnig P. 2005. Single lamellar mechanics of the human lumbar anulus fibrosus. Biomech Model Mechanobiol. 3:125–140.10.1007/s10237-004-0053-8
  • Jacobs NT, Cortes DH, Peloquin JM, Vresilovic EJ, Elliott DM. 2014. Validation and application of an intervertebral disc finite element model utilizing independently constructed tissue-level constitutive formulations that are nonlinear, anisotropic, and time-dependent. J Biomech. 47:2540–2546.10.1016/j.jbiomech.2014.06.008
  • Jaramillo HE, Gómez L, García JJ. 2015. A finite element model of the L4-L5-S1 human spine segment including the heterogeneity and anisotropy of the discs. Acta Bioeng Biomech. 17:15–24.
  • Kurutz M. 2010. In: Moratal D, editor. Finite element modelling of human lumbar spine. Finite Element Analysis. Croatia: Sciyo. InTech; p. 210–236.
  • Kurtz SM, Edidin AA. 2006. Spine technology handbook. Oxford: Academic Press.
  • Lu YM, Hutton WC, Gharpuray VM. 1996. Can variations in intervertebral disc height affect the mechanical function of the disc?. Spine (Phila Pa 1976). 21:2208–2216.
  • Maas SA, Ellis BJ, Ateshian GA, Weiss JA. 2012. FEBio: finite elements for biomechanics. J Biomech Eng. 134:011005.10.1115/1.4005694
  • Malandrino A, Planell JA, Lacroix D. 2009. Statistical factorial analysis on the poroelastic material properties sensitivity of the lumbar intervertebral disc under compression, flexion and axial rotation. J Biomech. 42:2780–2788.10.1016/j.jbiomech.2009.07.039
  • Malandrino A, Noailly J, Lacroix D. 2013. Regional annulus fibre orientations used as a tool for the calibration of lumbar intervertebral disc finite element models. Comput Methods Biomech Biomed Eng. 16:923–928.10.1080/10255842.2011.644539
  • Marchand F, Ahmed AM. 1990. Investigation of the laminate structure of lumbar disc anulus fibrosus. Spine (Phila Pa 1976). 15:402–410.
  • Marini G, Ferguson SJ. 2014. Modelling the influence of heterogeneous annulus material property distribution on intervertebral disk mechanics. Ann Biomed Eng. 42:1760–1772.10.1007/s10439-014-1025-5
  • Marini G, Studer H, Huber G, Püschel K, Ferguson SJ. 2016. Geometrical aspects of patient-specific modelling of the intervertebral disc: collagen fibre orientation and residual stress distribution. Biomech Model Mechanobiol. 15:543–560.10.1007/s10237-015-0709-6
  • Niemeyer F, Wilke HJ, Schmidt H. 2012. Geometry strongly influences the response of numerical models of the lumbar spine-A probabilistic finite element analysis. J Biomech. 45:1414–1423.10.1016/j.jbiomech.2012.02.021
  • Noailly J, Wilke HJ, Planell JA, Lacroix D. 2007. How does the geometry affect the internal biomechanics of a lumbar spine bi-segment finite element model? Consequences on the validation process. J Biomech. 40:2414–2425.10.1016/j.jbiomech.2006.11.021
  • Phadke MS. 1989. Matrix experiments using orthogonal arrays. Quality engineering using robust design. New Jersey: Prentice-Hall; p. 42–63.
  • Pintar FA, Yoganandan N, Myers T, Elhagediab A, Sances A Jr. 1992. Biomechanical properties of human lumbar spine ligaments. J Biomech. 25:1351–1356.10.1016/0021-9290(92)90290-H
  • Rao AA, Dumas GA. 1991. Influence of material properties on the mechanical behaviour of the L5-S1 intervertebral disc in compression: a nonlinear finite element study. J Biomed Eng. 13:139–151.10.1016/0141-5425(91)90061-B
  • Reutlinger C, Bürki A, Brandejsky V, Ebert L, Büchler P. 2014. Specimen specific parameter identification of ovine lumbar intervertebral discs: on the influence of fibre–matrix and fibre–fibre shear interactions. J Mech Behav Biomed Mater. 30:279–289.10.1016/j.jmbbm.2013.11.019
  • Schmidt H, Heuer F, Simon U, Kettler A, Rohlmann A, Claes L, Wilke H. 2006. Application of a new calibration method for a three-dimensional finite element model of a human lumbar annulus fibrosus. Clin Biomech. 21:337–344.10.1016/j.clinbiomech.2005.12.001
  • Schmidt H, Kettler A, Heuer F, Simon U, Claes L, Wilke H-J. 2007. Intradiscal pressure, shear strain, and fiber strain in the intervertebral disc under combined loading. Spine (Phila Pa 1976). 32:748–755.
  • Schmidt H, Kettler A, Rohlmann A, Claes L, Wilke HJ. 2007. The risk of disc prolapses with complex loading in different degrees of disc degeneration – a finite element analysis. Clin Biomech. 22:988–998.10.1016/j.clinbiomech.2007.07.008
  • Shirazi-Adl A, Ahmed AM, Shrivastava SC. 1986. Mechanical response of a lumbar motion segment in axial torque alone and combined with compression. Mech Response. 11:914–927.
  • Viceconti M, Olsen S, Nolte LP, Burton K. 2005. Extracting clinically relevant data from finite element simulations. Clin Biomech. 20:451–454.10.1016/j.clinbiomech.2005.01.010
  • Wang S, Xia Q, Passias P, Wood K, Li G. 2009. Measurement of geometric deformation of lumbar intervertebral discs under in vivo weightbearing condition. J Biomech. 42:705–711.10.1016/j.jbiomech.2009.01.004
  • Weisse B, Aiyangar AK, Affolter C, Gander R, Terrasi GP, Ploeg H. 2012. Determination of the translational and rotational stiffnesses of an L4–L5 functional spinal unit using a specimen-specific finite element model. J Mech Behav Biomed Mater. 13:45–61.10.1016/j.jmbbm.2012.04.002
  • Zander T, Rohlmann A, Bergmann G. 2004. Influence of ligament stiffness on the mechanical behavior of a functional spinal unit. J Biomech. 37:1107–1111.10.1016/j.jbiomech.2003.11.019
  • Zhu D, Gu G, Wu W, Gong H, Zhu W, Jiang T, Cao Z. 2008. Micro-structure and mechanical properties of annulus fibrous of the L4-5 and L5-S1 intervertebral discs. Clin Biomech. 23:S74–S82.10.1016/j.clinbiomech.2008.04.007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.