338
Views
12
CrossRef citations to date
0
Altmetric
Articles

The influence of fiber dispersion on the mechanical response of aortic tissues in health and disease: a computational study

, &
Pages 99-112 | Received 04 Sep 2017, Accepted 14 Dec 2017, Published online: 13 Feb 2018

References

  • Cubit AB. 2017. Cubit 15.0 user documentation. Sandia National Laboratories: Albuquerque (NM).
  • Doyle BJ, Callanan A, Burke PE, Grace PA, Walsh MT, Vorp DA, McGloughlin TM. 2009. Vessel asymmetry as an additional diagnostic tool in the assessment of abdominal aortic aneurysms. J Vasc Surg. 49:443–454.
  • Doyle BJ, Callanan A, McGloughlin TM. 2007. A comparison of modelling techniques for computing wall stress in abdominal aortic aneurysms. Biomed Eng Online. 6:137–161.
  • Doyle BJ, Cloonan AJ, Walsh MT, Vorp DA, McGloughlin TM. 2010. Identification of rupture locations in patient-specific abdominal aortic aneurysms using experimental and computational techniques. J Biomech. 43:1408–1416.
  • Elger DF, Blackketter RS, Budwig RS, Johansen KH. 1996. The influence of shape on the stresses in model abdominal aortic aneurysms. J Biomed Eng. 118:326–332.
  • Fillinger MF, Marra SP, Raghavan ML, Kennedy FE. 2003. Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter. J Vasc Surg. 37:724–732.
  • Fillinger MF, Raghavan ML, Marra SP, Cronenwett JL, Kennedy FE. 2002. In vivo analysis of mechanical wall stress and abdominal aortic aneurysm rupture risk. J Vasc Surg. 36:589–597.
  • Gasser TC, Ogden RW, Holzapfel GA. 2006. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface. 3:15–35.
  • Greenwald SE, Moore JE Jr, Rachev A, Kane TPC, Meister J-J. 1997. Experimental investigation of the distribution of residual strains in the artery wall. J Biomech Eng. 119:438–444.
  • Helfenstein J, Jabareen M, Mazza E, Govindjee S. 2010. On non-pyhsical response in models for fiber-reinforced hyperelastic materials. Int J Solids Struct. 47:2056–2061.
  • Holzapfel GA. 2000. Nonlinear solid mechanics. A continuum approach for engineering. Chichester: John Wiley & Sons.
  • Holzapfel GA, Gasser TC, Ogden RW. 2000. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elasticity. 61:1–48.
  • Holzapfel GA, Niestrawska JA, Ogden RW, Reinisch AJ, Schriefl AJ. 2015. Modelling non-symmetric collagen fibre dispersion in arterial walls. J R Soc Interface. 12. 20150188.
  • Holzapfel GA, Ogden RW. 2009. Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos Trans R Soc Lond A. 367:3445–3475.
  • Holzapfel GA, Sommer G, Auer M, Regitnig P, Ogden RW. 2007. Layer-specific 3D residual deformations of human aortas with non-atherosclerotic intimal thickening. Ann Biomed Eng. 35:530–545.
  • Horn\’{y} L, Netu\v{s}il M, Vo\v{n}avkov\’{a} T. 2014. Axial prestretch and circumferential distensibility in biomechanics of abdominal aorta. Biomech Model Mechanobiol. 13:783–799.
  • Inzoli F, Boschetti F, Zappa M, Longo T, Fumero R. 1993. Biomechanical factors in abdominal aortic aneurysm rupture. Eur J Vasc Surg. 7:667–674.
  • MATLAB. 2016. R2016a. The MathWorks Inc.: Natick (MA).
  • McGiffin DC, McGiffin PB, Galbraith AJ, Cross RB. 1992. Aortic wall stress profile after repair of coarctation of the aorta. It is related to subsequent true aneurysm formation? J Thorac Cardiovasc Surg. 104:924–931.
  • Mohan D, Melvin JW. 1983. Failure properties of passive human aortic tissue. II -- biaxial tension tests. J Biomech. 16:31–44.
  • Mower WR, Baraff LJ, Sneyd J. 1993. Stress distributions in vascular aneurysms: factors affecting risk of aneurysm rupture. J Surg Res. 55:155–161.
  • Niestrawska JA, Viertler Ch, Regitnig P, Cohnert TU, Sommer G, Holzapfel GA. 2016. Microstructure and mechanics of healthy and aneurysmatic abdominal aortas: experimental analysis and modeling. J R Soc Interface. 13:20160620.
  • O’Leary SA, Healey DA, Kavanagh EG, Walsh MT, McGloughlin TM, Doyle BJ. 2014. The biaxial biomechanical behavior of abdominal aortic aneurysm tissue. Ann Biomed Eng. 42:2440–2450.
  • Phillippi JA, Pasta S, Vorp DA. 2011. Biomechanics and pathobiology of aortic aneurysms. In: McGloughlin T, editor. Biomechanics and mechanobiology of aneurysms. Heidelberg: Springer; p. 67–118.
  • Pierce DM, Fastl TE, Rodriguez-Vila B, Verbrugghe P, Fourneau I, Maleux G, Herijgers P, Gomez EJ, Holzapfel GA. 2015. A method for incorporating three-dimensional residual stretches/stresses into patient-specific finite element simulations of arteries. J Mech Behav Biomed Mater. 47:147–164.
  • Polzer S, Gasser CT, Bursa J, Staffa R, Vlachovsky R, Man V, Skacel P. 2013. Importance of material model in wall stress prediction in abdominal aortic aneurysms. Med Eng Phys. 35:1282–1289.
  • Raghavan ML, Vorp DA. 2000. Toward a biomechanical tool to evaluate rupture potential of abdominal aortic \ aneurysm:identification of a finite strain constitutive model and evaluation of its applicability. J Biomech. 33:475–482.
  • Raghavan ML, Vorp DA, Federle MP, Makaroun MS, Webster MW. 2000. Wall stress distribution on three-dimensionally reconstructed models of human abdominal aortic aneurysm. J Vasc Surg. 31:760–769.
  • Raut SS, Jana A, De Oliveira V, Muluk SC, Finol EA. 2014. The effect of uncertainty in vascular wall material properties on abdominal aortic aneurysm wall mechanics. In: Doyle B, Miller K, Wittek A, Nielsen PMF, editors. Computational biomechanics for medicine. Fundamental science and patient-specific applications. New York (NY): Springer. p. 69–86.
  • Rodríguez JF, Martufi G, Doblaré M, Finol EA. 2009. The effect of material model formulation in the stress analysis of abdominal aortic aneurysms. Ann Biomed Eng. 37:2218–2221.
  • Rodríguez JF. Ruiz C. Doblaré M. Holzapfel GA. 2008. Mechanical stresses in abdominal aortic aneurysms: influence of diameter, asymmetry and material anisotropy. Biomech Eng. 130: 021023-1–10.
  • Sassani SG, Kakisis J, Tsangaris S, Sokolis DP. 2015. Layer-dependent wall properties of abdominal aortic aneurysms: experimental study and material characterization. J Mech Behav Biomed Mater. 49:141–161.
  • Schriefl AJ. Reinisch AJ. Sankaran S. Pierce DM. Holzapfel GA. 2012. Quantitative assessment of collagen fiber orientations from 2D images of soft biological tissues. J R Soc Interface. 9:3081–3093.
  • Schriefl AJ, Zeindlinger G, Pierce DM, Regitnig P, Holzapfel GA. 2012. Determination of the layer-specific distributed collagen fiber orientations in human thoracic and abdominal aortas and common iliac arteries. J R Soc Interface. 9:1275–1286.
  • Scotti CM, Jimenez J, Muluk SC, Finol EA. 2008. Wall stress and flow dynamics in abdominal aortic aneurysms: finite element analysis vs. fluid-structure interaction. Comput Methods Biomech Biomed Eng. 11:301–322.
  • Stringfellow MM, Lawrence PF, Stringfellow RG. 1987. The influence of aorta-aneurysm geometry upon stress in the aneurysm wall. J Surg Res. 42:425–433.
  • Taylor RL. 2013. FEAP -- a finite element analysis program, version 8.4 user manual. University of California at Berkeley: Berkeley (CA).
  • Thubrikar MJ, Al-Soudi J, Robicsek F. 2001. Wall stress studies of abdominal aortic aneurysm in a clinical model. Ann Vasc Surg. 15:355–366.
  • Tong J, Cohnert T, Regitnig P, Holzapfel GA. 2011. Effects of age on the elastic properties of the intraluminal thrombus and the thrombus-covered wall in abdominal aortic aneurysms: biaxial extension behavior and material modeling. Eur J Vasc Endovasc Surg. 42:207–219.
  • Vande Geest JP. Sacks MS. Vorp DA 2006. The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. J Biomech. 39:1324–1334.
  • Vorp DA, Raghavan ML, Webster MW. 1998. Mechanical wall stress in abdominal aortic aneurysm: influence of diameter and asymmetry. J Vasc Surg. 27:632–639.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.