406
Views
13
CrossRef citations to date
0
Altmetric
Articles

1D simulation of blood flow characteristics in the circle of Willis using THINkS

, , , &
Pages 389-397 | Received 28 Feb 2018, Accepted 16 Apr 2018, Published online: 03 May 2018

References

  • Ahmed MM, Reddy MV, Venkatachary M, Waheed A. 2015. Human Anatomic variations in the formation of circulus arerious – A dissection method. Int J Sci Res Publ. 5(3):1–6.
  • Alastruey J, Parker KH, Peiró J, Byrd SM, Sherwin SJ. 2007. Modelling the circle of Willis to assess the effects of anatomical variations and occlusions on cerebral flows. J Biomech. 40(8):1794–1805.10.1016/j.jbiomech.2006.07.008
  • Berg P, Stucht D, Janiga G, Beuing O, Speck O, Thévenin D. 2014. Cerebral blood flow in a healthy circle of willis and two intracranial aneurysms: computational fluid dynamics versus four-dimensional phase-contrast magnetic resonance imaging. J Biomech Eng. 136(4):041003.10.1115/1.4026108
  • Cebral JR, Raschi M. 2013. Suggested connections between risk factors of intracranial aneurysms: a review. Ann Biomed Eng. 41(7):1366–1383.10.1007/s10439-012-0723-0
  • Dolan JM, Kolega J, Meng H. 2013. High wall shear stress and spatial gradients in vascular pathology: A review. Ann Biomed Eng. 41(7):1411–1427.
  • Fahy P, Delassus P, McCarthy P, Sultan S, Hynes N, Morris L. 2014. An in vitro assessment of the cerebral hemodynamics through three patient specific circle of Willis geometries. J Biomech Eng. 136(1):011007.
  • Fahy P, McCarthy P, Sultan S, Hynes N, Delassus P, Morris L. 2014. An experimental investigation of the hemodynamic variations due to aplastic vessels within three-dimensional phantom models of the circle of willis. Ann Biomed Eng. 42(1):123–138.10.1007/s10439-013-0905-4
  • Ford MD, Alperin NLee, SH, HoldsworthDW, Steinman DA. 2005. Characterization of volumetric flow rate waveforms in the normal internal carotid and vertebral arteries. Physiol Meas. 26(4):477–488.10.1088/0967-3334/26/4/013
  • Gwilliam MN, Hoggard N, Capener D, Singh P, Marzo A, Verma PK, Wilkinson ID. 2009. MR derived volumetric flow rate waveforms at locations within the common carotid, internal carotid, and basilar arteries. J Cereb Blood Flow Metab. 29(12):1975–1982.10.1038/jcbfm.2009.176
  • Hendrikse J, van der Raamt AF, Graaf Y, Mali WPTM, van der Grond J. 2005. Distribution of cerebral blood flow in the circle of Willis. Radiology. 235(1):185–189.
  • Huang PG, Muller LO. 2015. Simulation of one-dimensional blood flow in networks of human vessels using a novel TVD scheme. Int J Numer Methods Biomed Eng. 31(5):e02701.10.1002/cnm.2701
  • Kasuya H, Shimizu T, Nakaya K, Sasahara A, Hori T, Takakura K. 1999. Angeles between A1 and A2 segments of the anterior cerebral artery visualized by three-dimensional computed tomographic angiography and association of anterior communicating artery aneurysm. Neurosurgery. 45(1):89–93.
  • Kayembe KN, Sasahara M, Hazama F. 1984. Cerebral aneurysms and variations in the circle of Willis. Stroke. 15:846–850.10.1161/01.STR.15.5.846
  • Krasny A, Nensa F, Sandalcioglu IE, Göricke SL, Wanke I, Gramsch C, Sirin S, Oezkan N, Sure U, Schlamann M. 2014. Association of aneurysms and variation of the A1 segment. J NeuroInterventional Surg. 6(3):178–183.10.1136/neurintsurg-2013-010669
  • Lasheras J. 2007. The biomechanics of arterial aneurysms. Ann Rev Fluid Mech. 39:293–319.10.1146/annurev.fluid.39.050905.110128
  • Lazzaro MA, Ouyang B, Chen M. 2012. The role of circle of Willis anomalies in cerebral aneurysm rupture. J NeuroInterventional Surg. 4(1):22–26.10.1136/jnis.2010.004358
  • Lee JH, Choi CG, Kim DK, Kim GE, Lee HK, Suh DC. 2004. Relationship between circle of Willis morphology on 3D time-of-flight MR angiograms and transient ischemia during vascular clamping of the internal carotid artery during carotid endarterectomy. AJNR Am J Neuroradiol. 25(4):558–564.
  • Liang F, Fukasaku K, Liu H, Takagi S. 2011. A computational model study of the influence of the anatomy of the circle of Willis on cerebral hyperperfusion following carotid artery surgery. BioMed Eng Online. 10(84):1–22.
  • Long Q, Luppi L, König CS, Rinaldo V, Das SK. 2008. Study of the collateral capacity of the circle of Willis of patients with severe carotid artery stenosis by 3D computational modeling. J Biomech. 41(12):2735–2742.10.1016/j.jbiomech.2008.06.006
  • Moore S, David T, Chase JG, Arnold J, Fink J. 2006. 3D models of blood flow in the cerebral vasculature. J Biomech. 39(8):1454–1463.10.1016/j.jbiomech.2005.04.005
  • Müller LO, Toro EF. 2014. A global multiscale mathematical model for the human circulation with emphasis on the venous system. Int J Num Methods Biomed Eng. 30(7):681–725.10.1002/v30.7
  • Reorowicz P, Obidowski D, Klosinski P, Szubert W, Stefanczyk L, Jozwik K. 2014. Numerical simulations of the blood flow in the patient-specific arterial cerebral circle region. J Biomech. 47(7):1642–1651.10.1016/j.jbiomech.2014.02.039
  • de Rooij NK, Velthuis BK, Algra A, Rinkel GJ. 2009. Configuration of the circle of Willis, direction of flow, and shape of the aneurysm as risk factors for rupture of intracranial aneurysms. J Neurol. 256:45–50.10.1007/s00415-009-0028-x
  • Songsaeng D, Geibprasert S, Willinsky R, Tymianski M, TerBrugge KG, Krings T. 2010. Impact of anatomical variations of the circle of Willis on the incidence of aneurysms and their recurrence rate following endovascular treatment. Clin Radiol. 65(11):895–901.10.1016/j.crad.2010.06.010
  • Tanaka H, Fujita N, Enoki T, Matsumoto K, Watanabe Y, Murase K, Nakamura H. 2006. Relationship between variations in the circle of Willis and flow rates in internal carotid and basilar arteries determined by means of magnetic resonance imaging with semiautomated lumen segmentation: reference data from 125 healthy volunteers. Am J Neuroradiol. 27(8):1770–1775.
  • Ujiie H, Liepsch DW, Goetz M, Yamaguchi R, Yonetani HM, Takakura K. 1996. Hemodynamic study of the anterior communicating artery. Stroke. 27(11):2086–2094.10.1161/01.STR.27.11.2086
  • Wilcox DC. 2000. Basic fluid mechanics. 2nd ed. La Cañada Flintridge (CA): DCW Industries.
  • Yu H, Huang PG, Yang ZF, Liang F, Ludwig B. 2016. The influence of normal and early vascular aging on hemodynamic characteristics in cardio- and cerebrovascular systems. J Biomech Eng. 138(6):061002.10.1115/1.4033179

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.