2,008
Views
8
CrossRef citations to date
0
Altmetric
Articles

An approach to generate noncontact ACL-injury prone situations on a computer using kinematic data of non-injury situations and Monte Carlo simulation

, , , &
Pages 3-10 | Received 03 May 2018, Accepted 08 Sep 2018, Published online: 06 Nov 2018

References

  • Bahr R, Krosshaug T. 2005. Understanding injury mechanisms: a key component of preventing injuries in sport. Br J Sports Med. 39(6):324–329.
  • Bally A, Boreiko M, Bonjour F, Brown CA. 1989. Modeling forces on the anterior cruciate knee ligament during backward falls while skiing. Skiing Trauma and Safety: Seventh International Symposium. ASTM International.
  • Barone M, Senner V, Schaff P. 1999. ACL injury mechanism in alpine skiing: analysis of an accidental ACL rupture. Skiing Trauma and Safety: Twelfth Volume. ASTM International.
  • Bere T, Flørenes TW, Krosshaug T, Koga H, Nordsletten L, Irving C, Muller E, Reid RC, Senner V, Bahr R. 2011. Mechanisms of anterior cruciate ligament injury in world cup alpine skiing: a systematic video analysis of 20 cases. Am J Sports Med. 39(7):1421–1429.
  • Betts JT. 2010. Practical methods for optimal control and estimation using nonlinear programming. Philadelphia (PA): Siam.
  • Boden BP, Dean GS, Feagin JA, Garrett WE. 2000. Mechanisms of anterior cruciate ligament injury. Orthopedics. 23(6):573–578.
  • Carlson VR, Sheehan FT, Boden BP. 2016. Video analysis of anterior cruciate ligament (ACL) injuries: a systematic review. JBJS Rev. 4(11):1.
  • Eberle R, Heinrich D, Kaps P, Oberguggenberger M, Nachbauer W. 2017. Effect of ski boot rear stiffness (SBRS) on maximal ACL force during injury prone landing movements in alpine ski racing: a study with a musculoskeletal simulation model. J Sports Sci. 35(12):1125–1133.
  • Erdemir A, McLean S, Herzog W, van den Bogert AJ. 2007. Model-based estimation of muscle forces exerted during movements. Clin Biomech (Bristol, Avon). 22(2):131–154.
  • Gerritsen KG, Nachbauer W, van den Bogert AJ. 1996. Computer simulation of landing movement in downhill skiing: anterior cruciate ligament injuries. J Biomech. 29(7):845–854.
  • Griffin LY, Albohm MJ, Arendt EA, Bahr R, Beynnon BD, DeMaio M, Dick RW, Engebretsen L, Garrett WE, Hannafin JA. 2006. Understanding and preventing noncontact anterior cruciate ligament injuries. Am J Sports Med. 34(9):1512–1532.
  • He J, Levine WS, Loeb GE. 1991. Feedback gains for correcting small perturbations to standing posture. IEEE Trans Automat Contr. 36(3):322–332.
  • Heinrich D, Bogert A, Nachbauer W. 2014. Relationship between jump landing kinematics and peak ACL force during a jump in downhill skiing: a simulation study. Scand J Med Sci Sports. 24(3):e180.
  • Ireland ML. 1999. Anterior cruciate ligament injury in female athletes: epidemiology. J Athl Train. 34(2):150
  • Kernozek TW, Ragan RJ. 2008. Estimation of anterior cruciate ligament tension from inverse dynamics data and electromyography in females during drop landing. Clin Biomech (Bristol, Avon). 23(10):1279–1286.
  • Laughlin WA, Weinhandl JT, Kernozek TW, Cobb SC, Keenan KG, O'Connor KM. 2011. The effects of single-leg landing technique on ACL loading. J Biomech. 44(10):1845–1851.
  • Lin CF, Liu H, Gros MT, Weinhold P, Garrett WE, Yu B. 2012. Biomechanical risk factors of non-contact ACL injuries: A stochastic biomechanical modeling study. J Sport Health Sci. 1(1):36–42.
  • McLean SG, Huang X, Su A, van den Bogert AJ. 2004. Sagittal plane biomechanics cannot injure the ACL during sidestep cutting. Clin Biomech. 19(8):828–838.
  • McLean SG, Huang X, van den Bogert AJ. 2008. Investigating isolated neuromuscular control contributions to non-contact anterior cruciate ligament injury risk via computer simulation methods. Clin Biomech (Bristol, Avon). 23(7):926–936.
  • McLean SG, Su A, van den Bogert AJ. 2003. Development and validation of a 3-D model to predict knee joint loading during dynamic movement. J Biomech Eng. 125(6):864–874.
  • Mokhtarzadeh H, Yeow CH, Goh JCH, Oetomo D, Malekipour F, Lee PVS. 2013. Contributions of the soleus and gastrocnemius muscles to the anterior cruciate ligament loading during single-leg landing. J Biomech. 46(11):1913–1920.
  • Nachbauer W, Kaps P, Nigg B, Brunner F, Lutz A, Obkircher G, Mössner M. 1996. A video technique for obtaining 3-d coordinates in alpine skiing. J Appl Biomech. 12(1):104–115.
  • Pandy MG, Andriacchi TP. 2010. Muscle and joint function in human locomotion. Annu Rev Biomed Eng. 12:401–433.
  • Porsa S, Lin YC, Pandy MG. 2016. Direct methods for predicting movement biomechanics based upon optimal control theory with implementation in opensim. Ann Biomed Eng. 44(8):2542–2557.
  • Schindelwig K, Reichl W, Kaps P, Mössner M, Nachbauer W. 2015. Safety assessment of jumps in ski racing. Scand J Med Sci Sports. 25(6):797–805.
  • van den Bogert AJ, Blana D, Heinrich D. 2011. Implicit methods for efficient musculoskeletal simulation and optimal control. Procedia IUTAM. 2:297–316.
  • Wächter A, Biegler LT. 2006. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math Prog. 106(1):25–57.
  • Weinhandl JT, O’Connor KM. 2017. Influence of ground reaction force perturbations on anterior cruciate ligament loading during sidestep cutting. Comp Methods Biomech Biomed Eng. 20(13):1394–1402.
  • Woo SLY, Hollis JM, Adams DJ, Lyon RM, Takai S. 1991. Tensile properties of the human femur-anterior cruciate ligament-tibia complex: the effects of specimen age and orientation. Am J Sports Med. 19(3):217–225.
  • Yu B, Garrett WE. 2007. Mechanisms of non-contact ACL injuries. Br J Sports Med. 41(Supplement 1):i47–i51.
  • Zajac FE. 1989. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng. 17(4):359–411.