248
Views
0
CrossRef citations to date
0
Altmetric
Articles

Effects of membrane reference state on shape memory of a red blood cell

, , &
Pages 465-474 | Received 05 Sep 2018, Accepted 28 Dec 2018, Published online: 04 Feb 2019

References

  • Abkarian M, Faivre M, Viallat A. 2007. Swinging of red blood cells under shear flow. Phys Rev Lett. 98(18):188302
  • Boedec G, Leonetti M, Jaeger M. 2011. 3D vesicle dynamics simulations with a linearly triangulated surface. Comput Phys. 230(4):1020–1034.
  • Braunmuller S, Schmid L, Sackmann E, Franke T. 2012. Hydrodynamic deformation reveals two coupled modes/time scales of red blood cell relaxation. Soft Matter. 8(44):11240.
  • Charrier JM, Shrivastava S, Wu R. 1989. Free and constrained inflation of elastic membranes in relation to thermoforming - non-axisymmetirc problems. J Strain Anal. 24(2):55–74.
  • Cordasco D, Bagchi P. 2017. On the shape memory of red blood cells. Phys Fluids. 29(4):041901.
  • Cordasco D, Yazdani A, Bagchi P. 2014. Comparison of erythrocyte dynamics in shear flow under different stress-free configurations. Phys Fluids. 26(4):041902.
  • Dodson RWR, Dimitrakopoulos P. 2010. Tank-treading of erythrocytes in strong shear flows via a nonstiff cytoskeleton-based continuum computational modeling. Biophys J. 99(9):2906–2916.
  • Dupire J, Socol M, Viallat A. 2012. Full dynamics of a red blood cell in shear flow. Proc Natl Acad Sci USA. 109(51):20808–20813.
  • Evans E, Fung YC. 1972. Improved measurements of the erythrocyte geometry. Microvasc Res. 4(4):335–347.
  • Evans J, Gratzer W, Mohandas N, Parker K, Sleep J. 2008. Fluctuations of the red blood cell membrane: relation to mechanical properties and lack of ATP dependence. Biophys J. 94(10):4134–4144.
  • Fedosov DA, Caswell B, Karniadakis GE. 2010. A multiscale red blood cell model with accurate mechanics, rheology, and dynamics. Biophys J. 98(10):2215–2225.
  • Fischer TM. 2004. Shape memory of human red blood cells. Biophys J. 86(5):3304–3313.
  • Fischer TM. 2007. Tank-tread frequency of the red cell membrane: dependence on the viscosity of the suspending medium. Biophys J. 93(7):2553–2561.
  • Fischer TM, Korzeniewski R. 2013. Threshold shear stress for the transition between tumbling and tank-treading of red blood cells in shear flow: dependence on the viscosity of the suspending medium. J Fluid Mech. 736:351–365.
  • Fischer TM, Stohr-Lissen M, Schmid-Schonbein H. 1978. The red cell as a fluid droplet: tank tread-like motion of the human erythrocyte membrane in shear flow. Science. 202(4370):894–896.
  • Gou Z, Huang F, Ruan X, Fu X. 2018. Shape memory of elastic capsules under the effect of spontaneous shape. Commun Comput Phys. 24(1):234–252.
  • Gounley J, Peng Y. 2014. Shape recovery of elastic capsules from shear flow induced deformation. Commun Comput Phys. 16(01):56–74.
  • Helfrich W. 1973. Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforsch C. 28(11):693–703.
  • Keller SR, Skalak R. 1982. Motion of a tank-treading ellipsoidal particle in a shear flow. J Fluid Mech. 120(1):27–47.
  • Lanotte L, Mauer J, Mendez S, Fedosov DA, Fromental JM, Claveria V, Nicoud F, Gompper G, Abkarian M. 2016. Red cells’ dynamic morphologies govern blood shear thinning under microcirculatory flow conditions. Proc Natl Acad Sci USA. 113(47):13289–13294.
  • Lim HWG, Wortis M, Mukhopadhyay R. 2002. Stomatocyte-discocyte-echinocyte sequence of the human red blood cell: evidence for the bilayer-couple hypothesis from membrane mechanics. Proc Natl Acad Sci USA. 99(26):16766–16769.
  • Mills JP, Qie L, Dao M, Lim CT, Suresh S. 2004. Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers. Mech Chem Biosyst. 1(3):169–180.
  • Niu X, Shi L, Pan TW, Glowinski R. 2015. Numerical simulation of the motion of inextensible capsules in shear flow under the effect of the natural state. Commun Comput Phys. 18(03):787–807.
  • Peng Z, Asaro RJ, Zhu Q. 2010. Multiscale simulation of erythrocyte membranes. Phys Rev E: Stat Nonlin Soft Matter Phys. 81(3 Pt 1):031904
  • Peng Z, Mashayekh A, Zhu Q. 2014. Erythrocyte responses in low-shear-rate flows: effects of non-biconcave stress-free state in the cytoskeleton. J Fluid Mech. 742:96–118.
  • Peng Z, Salehyar S, Zhu Q. 2015. Stability of the tank treading modes of erythrocytes and its dependence on cytoskeleton reference states. J Fluid Mech. 771:449–467.
  • Peng ZL, Zhu Q. 2013. Deformation of the erythrocyte cytoskeleton in tank treading motions. Soft Matter. 9(31):7617–7627.
  • Petitjean S. 2002. A survey of methods for recovering quadrics in triangle meshes. ACM Comput Surv. 34(2):211–262.
  • Siguenza J, Mendez S, Nicoud F. 2017. How should the optical tweezers experiment be used to characterize the red blood cell membrane mechanics? Biomech Model Mechanobiol. 16(5):1645–1657.
  • Sinha K, Graham MD. 2015. Dynamics of a single red blood cell in simple shear flow. Phys Rev E: Stat Nonlin Soft Matter Phys. 92(4):042710
  • Skalak R, Tozeren A, Zarda RP, Chien S. 1973. Strain energy function of red blood cell membranes. Biophys J. 13(3):245–264.
  • Skotheim JM, Secomb TW. 2007. Red blood cells and other nonspherical capsules in shear flow: oscillatory dynamics and the tank-treading-to-tumbling transition. Phys Rev Lett. 98(7):078301
  • Sui Y, Chen XB, Chew YT, Roy P, Low HT. 2010. Numerical simulation of capsule deformation in simple shear flow. Comput Fluids. 39(2):242–250.
  • Tsubota K, Wada S, Liu H. 2014. Elastic behavior of a red blood cell with the membrane's nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion. Biomech Model Mechanobiol. 13(4):735–746.
  • Yazdani AZ, Bagchi P. 2011. Phase diagram and breathing dynamics of a single red blood cell and a biconcave capsule in dilute shear flow. Phys Rev E: Stat Nonlin Soft Matter Phys. 84(2 Pt 2):026314
  • Zhong-Can OY, Helfrich W. 1989. Bending energy of vesicle membranes: general expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders. Phys Rev A. 39(10):5280–5288.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.