567
Views
2
CrossRef citations to date
0
Altmetric
Articles

Relating mechanical properties of vertebral trabecular bones to osteoporosis

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 54-68 | Received 17 Mar 2019, Accepted 27 Nov 2019, Published online: 09 Dec 2019

References

  • Adams JE. 2013. Advances in bone imaging for osteoporosis. Nat Rev Endocrinol. 9(1):28–42.
  • Amstrup AK, Jakobsen NFB, Moser E, Sikjaer T, Mosekilde L, Rejnmark L. 2016. Association between bone indices assessed by DXA, HR-pQCT and QCT scans in post-menopausal women. J Bone Miner Metab. 34(6):638–645.
  • Aoubiza B, Crolet JM, Meunier A. 1996. On the mechanical characterization of compact bone structure using the homogenization theory. J Biomech. 29(12):1539–1547.
  • Ashman RB, Corin JD, Turner CH. 1987. Elastic properties of cancellous bone: measurement by an ultrasonic technique. J Biomech. 20(10):979–986.
  • Augat P, Link T, Lang TF, Lin JC, Majumdar S, Genant HK. 1998. Anisotropy of the elastic modulus of trabecular bone specimens from different anatomical locations. Med Eng Phys. 20(2):124–131.
  • Bakhvalov N, Panasenko G. 1989. Homogenisation: averaging Processes in periodic media. Dordrecht: Springer Netherlands.
  • Ballane G, Cauley JA, Luckey MM, El-Hajj Fuleihan G. 2017. Worldwide prevalence and incidence of osteoporotic vertebral fractures. Osteoporos Int. 28(5):1531–1542.
  • Barak MM, Black MA. 2018. A novel use of 3D printing model demonstrates the effects of deteriorated trabecular bone structure on bone stiffness and strength. J Mech Behav Biomed Mater. 78:455–464.
  • Basaruddin KS, Takano N. 2014. Estimation of apparent elastic moduli of trabecular bone considering biological apatite (BAp) crystallite orientation in tissue modulus. Advanced Materials Research. Vol. 894; p. 167–171.
  • Borges JLC, de M Miranda IS, Lewiecki EM. 2017. The Clinical utility of vertebral fracture assessment in predicting fractures. J Clin Densitometry. 20(3):304–308.
  • Burr DB. 2019. Changes in bone matrix properties with aging. Bone. 120:85–93.
  • Cesar R, Boffa RS, Fachine LT, Leivas TP, Silva AMH, Pereira CAM, Reiff RBM, Rollo J. 2013. Evaluation of trabecular microarchitecture of normal osteoporotic and osteopenic human vertebrae. Proc Eng. 59:6–15.
  • Cesar R, Leivas TP, Pereira CAM, Boffa RS, Guarniero R, Reiff RB, de M, Mandeli Netto A, Fortulan CA, Rollo JMDDA. 2017. Axial compressive strength of human vertebrae trabecular bones classified as normal, osteopenic and osteoporotic by quantitative ultrasonometry of calcaneus. Res Biomed Eng. 33(2):91–96.
  • Chandran M. 2017. Fracture risk assessment in clinical practice: why do it? What to do it with? J Clin Densitometry. 20(3):274–279.
  • Chappard D, Baslé MF, Legrand E, Audran M. 2008. Trabecular bone microarchitecture: a review. Morphologie. 92(299):162–170.
  • Chappard D, Baslé MF, Legrand E, Audran M. 2011. New laboratory tools in the assessment of bone quality. Osteoporos Int. 22(8):2225–2240.
  • Charalambakis N. 2010. Homogenization techniques and micromechanics. A survey and perspectives. Appl Mech Rev. 63(3):030803.
  • Chen Y, Dall׳Ara E, Sales E, Manda K, Wallace R, Pankaj P, Viceconti M. 2017. Micro-CT based finite element models of cancellous bone predict accurately displacement once the boundary condition is well replicated: a validation study. J Mech Behav Biomed Mater. 65:644–651.
  • Cherraf-Schweyer C, Maurice G, Taghite M, Taous K. 2007. An experimental and theoretical approach of elasticity and viscoelasticity of compact and spongy bone with periodic homogenization. Comput Methods Biomech Biomed Eng. 10(3):195–207.
  • Chevalier Y, Charlebois M, Pahr D, Varga P, Heini P, Schneider E, Zysset P. 2008. A patient-specific finite element methodology to predict damage accumulation in vertebral bodies under axial compression, sagittal flexion and combined loads. Comput Methods Biomech Biomed Eng. 11(5):477–487.
  • Choi AH, Ben-Nissan B. 2018. Anatomy, modeling and biomaterial fabrication for dental and maxillofacial applications. University of Technology Sydney, Australia: Bentham Science Publishers.
  • Cioranescu D, Paulin J. 1999. Homogenization of reticulated structures. Vol. 136. New York (NY): Springer-Verlag.
  • Cowin S. C. 2001. Bone mechanics handbook. Vol. 2. Boca Raton, USA: CRC Press.
  • Cowin SC. 1989. The mechanical properties of cancellous bone. In: Cowin SC, editor. Bone mechanics. Boca Raton (FL): CRC Press; p. 129–157.
  • Crolet JM, Aoubiza B, Meunier A. 1993. Compact bone: numerical simulation of mechanical characteristics. J Biomech. 26(6):677–687.
  • Currey JD. 1970. The mechanical properties of bone. Clin Orthop Rel Res. 73:210–231.
  • Currey JD. 2006. Bones: structure and mechanics. Princeton (NJ): Princeton University Press.
  • Curtis EM, Moon RJ, Harvey NC, Cooper C. 2017. Reprint of: the impact of fragility fracture and approaches to osteoporosis risk assessment worldwide. Int J Orthopaedic Trauma Nurs. 26:7–17.
  • Cyganik Ł, Binkowski M, Kokot G, Rusin T, Popik P, Bolechała F, Nowak R, Wróbel Z, John A. 2014. Prediction of Young’s modulus of trabeculae in microscale using macro-scale’s relationships between bone density and mechanical properties. J Mech Behav Biomed Mater. 36:120–134.
  • D’Elia G, Caracchini G, Cavalli L, Innocenti P. 2009. Bone fragility and imaging techniques. Clin Cases Miner Bone Metab. 6:234–246.
  • Damm T, Peña JA, Campbell GM, Bastgen J, Barkmann R, Glüer CC. 2019. Improved accuracy in the assessment of vertebral cortical thickness by quantitative computed tomography using the Iterative Convolution OptimizatioN (ICON) method. Bone. 120:194–203.
  • Dempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR, Parfitt AM. 2013. Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res. 28(1):2–17.
  • Dimai HP. 2017. Use of dual-energy X-ray absorptiometry (DXA) for diagnosis and fracture risk assessment; WHO-criteria, T- and Z-score, and reference databases. Bone. 104:39–43.
  • Dos Reis F, Ganghoffer JF. 2012. Construction of micropolar continua from the asymptotic homogenization of beam lattices. Comput Struct. 112–113:354–363.
  • Dos Reis F, Ganghoffer JF. 2014. Homogenized elastoplastic response of repetitive 2D lattice truss materials. Comput Mater Sci. 84:145–155.
  • ElNady K, Goda I, Ganghoffer J-F. 2016. Computation of the effective nonlinear mechanical response of lattice materials considering geometrical nonlinearities. Comput Mech. 58(6):957–979.
  • Evans F.G. 1973. Mechanical properties of bone. In: Burdi AR, editor. American lecture series. Springfield (IL): Charles C. Thomas; p. 8–9.
  • Fairfield H, Falank C, Farrell M, Vary C, Boucher JM, Driscoll H, Liaw L, Rosen CJ, Reagan MR. 2019. Development of a 3D bone marrow adipose tissue model. Bone. 118:77–88.
  • Fields AJ, Nawathe S, Eswaran SK, Jekir MG, Adams MF, Papadopoulos P, Keaveny TM. 2012. Vertebral fragility and structural redundancy. J Bone Miner Res. 27(10):2152–2158.
  • Fonseca H, Moreira-Gonçalves D, Coriolano HJA, Duarte JA. 2014. Bone quality: the determinants of bone strength and fragility. Sports Med. 44(1):37–53.
  • Galka A, Telega JJ, Tokarzewski S. 1999. Application of homogenization to evaluation of effective moduli of linear elastic trabecular bone with plate-like structure. Arch Mech. 51:335–355.
  • Geers MGD, Kouznetsova VG, Matouš K, Yvonnet J. 2017. Homogenization methods and multiscale modeling: nonlinear problems. In: Encyclopedia of computational mechanics. Vol. 2, Chichester (UK): John Wiley & Sons; p. 1–34.
  • Geusens P, Chapurlat R, Schett G, Ghasem-Zadeh A, Seeman E, De Jong J, Van Den Bergh J. 2014. High-resolution in vivo imaging of bone and joints: a window to microarchitecture. Nat Rev Rheumatol. 10(5):304–313.
  • Gibson J, Ashby MF. 1997. Cellular solids (structure and properties). Vol. 2. Cambridge: Cambridge University Press.
  • Gibson LJ. 2005. Biomechanics of cellular solids. J Biomech. 38(3):377–399.
  • Goda I, Assidi M, Ganghoffer JF. 2014. A 3D elastic micropolar model of vertebral trabecular bone from lattice homogenization of the bone microstructure. Biomech Model Mechanobiol. 13(1):53–83.
  • Goda I, Ganghoffer JF. 2018. Modeling of anisotropic remodeling of trabecular bone coupled to fracture. Arch Appl Mech. 88(12):2101–2121.
  • Goda I, Rahouadj R, Ganghoffer JF, Kerdjoudj H, Siad L. 2016. 3D couple-stress moduli of porous polymeric biomaterials using μcT image stack and FE characterization. Int J Eng Sci. 100:25–44.
  • Griffith JF, Genant HK. 2008. Bone mass and architecture determination: state of the art. Best practice and research. Clin Endocrinol Metab. 22:737–764.
  • Guilak F. 1994. Volume and surface area measurement of viable chondrocytes in situ using geometric modelling of serial confocal sections. J Microsc. 173(3):245–256.
  • Hamed E, Jasiuk I, Yoo A, Lee Y, Liszka T. 2012. Multi-scale modelling of elastic moduli of trabecular bone. J R Soc Interface. 9(72):1654–1673.
  • Hans D, Baim S. 2017. Quantitative ultrasound (QUS) in the management of osteoporosis and assessment of fracture risk. J Clin Densitometry. 20(3):322–333.
  • Hill R, Hearmon R. 1964. An introduction to applied anisotropic elasticity. Math Gaz. 48(363):129.
  • Hollister SJ, Brennan JM, Kikuchi N. 1994. A homogenization sampling procedure for calculating trabecular bone effective stiffness and tissue level stress. J Biomech. 27(4):433–444.
  • Hollister SJ, Fyhrie DP, Jepsen KJ, Goldstein SA. 1991. Application study of homogenization theory to the trabecular bone mechanics. J Biomech. 24:825–839.
  • Hollister SJ, Kikuchi N. 1992. A comparison of homogenization and standard mechanics analyses for periodic porous composites. In: Computational mechanics. Vol. 10. New York (NY): Springer-Verlag; p. 73–95.
  • Hollister SJ, Kikuchi N. 1994. Homogenization theory and digital imaging: a basis for studying the mechanics and design principles of bone tissue. Biotechnol Bioeng. 43(7):586–596.
  • Johnson MW. Jr. 1967. Theory of elasticity of an anisotropic elastic body. SIAM Rev. 9:136–136.
  • Kanis J. A, Cooper C, Rizzoli R, Reginster J.-Y. 2018. Review of the guideline of the American College of Physicians on the treatment of osteoporosis. Osteoporos Int. 29(7):1505–1510.
  • Karaguzel G, Holick MF. 2010. Diagnosis and treatment of osteopenia. Rev Endocr Metab Disord. 11(4):237–251.
  • Keaveny TM, Morgan EF, Niebur GL, Yeh OC. 2001. Biomechanics of trabecular bone. Annu Rev Biomed Eng. 3(1):307–333.
  • Kowalczyk P. 2003. Elastic properties of cancellous bone derived from finite element models of parameterized microstructure cells. J Biomech. 36:961–972.
  • Liu X S, Zhang X H, Rajapakse C S, Wald M J, Magland J, Sekhon K K, Adam M F, Sajda P, Wehrli F W, Guo X E. 2010. High-resolution peripheral quantitative computed tomography can assess microstructural and mechanical properties of human distal tibial bone. J Bone Miner Res. 25(9):2039–2756.
  • Lloyd AA, Wang ZX, Donnelly E. 2015. Multiscale contribution of bone tissue material property heterogeneity to trabecular bone mechanical behavior. J Biomech Eng. 137(1):010801.
  • Lopes DL, Martins-Cruz C, Oliveira MB, Mano JF. 2018. Bone physiology as inspiration for tissue regenerative therapies. Biomaterials. 185:240–275.
  • Lorensen WE, Cline HE. 1987. Marching cubes: a high resolution 3D surface construction algorithm. Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques - SIGGRAPH ’87. Vol. 21. New York (NY): ACM Press; p. 163–169.
  • Loures M A R, Zerbini C A F, Danowski J S, Pereira R M R, Moreira C, Paula A P d, Castro C H M, Szejnfeld V L, Mendonça L M C, Radominiski S C, et al. 2017. Guidelines of the Brazilian Society of Rheumatology for the diagnosis and treatment of osteoporosis in men. Rev Bras de Reumatologia. 57:497–514.
  • Mahadevan V. 2018. Anatomy of the vertebral column. Surgery (Oxford). 36(7):327–332. doi:10.1016/j.mpsur.2018.05.006.
  • Maquer G, Musy SN, Wandel J, Gross T, Zysset PK. 2015. Bone volume fraction and fabric anisotropy are better determinants of trabecular bone stiffness than other morphological variables. J Bone Miner Res. 30(6):1000–1008. doi:10.1002/jbmr.2437.
  • Martin RB, Burr DB, Sharkey NA, Fyhrie DP. 2015. Mechanical properties of bone. In: Skeletal tissue mechanics. Vol. 2. New York (NY): Springer; p. 355–422.
  • Metcalf L M, Dall'Ara E, Paggiosi M A, Rochester J R, Vilayphiou N, Kemp G J, McCloskey E V. 2018. Validation of calcaneus trabecular microstructure measurements by HR-pQCT. Bone. 106:69–77.
  • Michael Lewiecki E, Binkley N. 2017. DXA: 30 years and counting. Bone. 104:1–3.
  • Müller R, Rüegsegger P. 1994. Three-dimensional finite element assessed trabecular modelling of bone structures. Med Eng Phys. 17:126–133.
  • Nazemi SM, Cooper DML, Johnston JD. 2016. Quantifying trabecular bone material anisotropy and orientation using low-resolution clinical CT images: a feasibility study. Med Eng Phys. 38(9):978–987.
  • Novitskaya E, Chen P-Y, Hamed E, Jun L, Lubarda V, Jasiuk I, Mckittrick J. 2011. Recent advances on the measurement and calculation of the elastic moduli of cortical and trabecular bone: a review. Theor Appl Mech (Belgr). 38(3):209–297.
  • Oftadeh R, Perez-Viloria M, Villa-Camacho JC, Vaziri A, Nazarian A. 2015. Biomechanics and mechanobiology of trabecular bone: a review. J Biomech Eng. 137(1):010802.
  • Oleinik OA, Shamaev AS, Yosifian GA. 1992. Mathematical problems in elasticity and homogenization. In: Studies in mathematics and its applications. Vol. 26. Amsterdam: North-Holland; p. 1–398.
  • Osterhoff G, Morgan EF, Shefelbine SJ, Karim L, McNamara LM, Augat P. 2016. Bone mechanical properties and changes with osteoporosis. Injury. 47:S11–S20.
  • Ott SM. 2018. Cortical or trabecular bone: what’s the difference? Am J Nephrol. 47(6):373–375.
  • Papanicolau G, Bensoussan A, Lions JL. 1978. Asymptotic analysis for periodic structures. In: Studies in mathematics and its applications. Vol. 1. Amsterdam: North-Holland; p. 1–699.
  • Parfitt AM. 2002. Misconceptions (2): turnover is always higher in cancellous than in cortical bone. Bone. 30(6):807–809.
  • Parnell WJ, Grimal Q. 2009. The influence of mesoscale porosity on cortical bone anisotropy. Investigations via asymptotic homogenization. J R Soc Interface. 6(30):97–109.
  • Parreira PCS, Maher CG, Megale RZ, March L, Ferreira ML. 2017. An overview of clinical guidelines for the management of vertebral compression fracture: a systematic review. Spine J. 17(12):1932–1938.
  • Perilli E, Briggs AM, Kantor S, Codrington J, Wark JD, Parkinson IH, Fazzalari NL. 2012. Failure strength of human vertebrae: prediction using bone mineral density measured by DXA and bone volume by micro-CT. Bone. 50(6):1416–1425.
  • Ramchand SK, Seeman E. 2018. The influence of cortical porosity on the strength of bone during growth and advancing age. Curr Osteoporos Rep. 16(5):561–572.
  • Ramírez-Torres A, Penta R, Rodríguez-Ramos R, Merodio J, Sabina FJ, Bravo-Castillero J, Guinovart-Díaz R, Preziosi L, Grillo A. 2018. Three scales asymptotic homogenization and its application to layered hierarchical hard tissues. Int J Solids Struct. 130–131:190–198.
  • Ripamonti C, Lisi L, Buffa A, Gnudi S, Caudarella R. 2018. The trabecular bone score predicts spine fragility fractures in postmenopausal caucasian women without osteoporosis independently of bone mineral density. Med Arch. 72(1):46–50.
  • Sanchez-Palencia E. 1980. Non-homogeneous media and vibration theory. Vol. 127. Heidelberg: Springer Berlin; p. 1–400.
  • Sandino C, McErlain DD, Schipilow J, Boyd SK. 2017. Mechanical stimuli of trabecular bone in osteoporosis: a numerical simulation by finite element analysis of microarchitecture. J Mech Behav Biomed Mater. 66:19–27.
  • Schweser KM, Crist BD. 2017. Osteoporosis: a discussion on the past 5 years. Curr Rev Musculoskelet Med. 10(2):265–274.
  • Shanbhogue V V, Brixen K, Hansen S. 2016. Age and sex related changes in bone microarchitecture and estimated strength: a three-year prospective study using HRpQCT. J Bone Miner Res. 31(8):1541–1549.
  • Shi X, Liu XS, Wang X, Guo XE, Niebur GL. 2010. Effects of trabecular type and orientation on microdamage susceptibility in trabecular bone. Bone. 46(5):1260–1266.
  • Singhal V, Bredella MA. 2019. Marrow adipose tissue imaging in humans. Bone. 118:69–76.
  • Sozen T, Ozisik L, Calik Basaran N. 2017. An overview and management of osteoporosis. Eur J Rheumatol. 4(1):46–56.
  • Stemper BD, Yoganandan N, Baisden JL, Umale S, Shah AS, Shender BS, Paskoff GR. 2015. Rate-dependent fracture characteristics of lumbar vertebral bodies. J Mech Behav Biomed Mater. 41:271–279.
  • Subramaniam S, Ima-Nirwana S, Chin K-Y. 2018. Performance of osteoporosis self-assessment tool (OST) in predicting osteoporosis- A review. Int J Environ Res Public Health. 15(7):1445.
  • Syahrom A, Abdul Kadir MR, Abdullah J, Öchsner A. 2011. Mechanical and microarchitectural analyses of cancellous bone through experiment and computer simulation. Med Biol Eng Comput. 49(12):1393–1403.
  • Syahrom A, Januddi M-F, bin MS, Harun M, Öchsner A. 2017. Cancellous bone. In: Advanced structured materials. Vol. 82. Singapore: Springer; p. 7–20.
  • Tawara D, Sakamoto J, Murakami H, Kawahara N, Oda J, Tomita K. 2010. Mechanical evaluation by patient-specific finite element analyses demonstrates therapeutic effects for osteoporotic vertebrae. J Mech Behav Biomed Mater. 3(1):31–40.
  • Tjong W, Kazakia GJ, Burghardt AJ, Majumdar S. 2012. The effect of voxel size on high-resolution peripheral computed tomography measurements of trabecular and cortical bone microstructure. Med Phys. 39(4):1893–1903.
  • Tokarzewski S, Telega JJ, Gałka A. 1999. A contribution to evaluation of effective moduli of trabecular bone with rod-like microestructure. J Theor Appl Mech. 3:707–728.
  • Tomasevic-Todorovic S, Vazic A, Issaka A, Hanna F. 2018. Comparative assessment of fracture risk among osteoporosis and osteopenia patients: a cross-sectional study. Open Access Rheumatol: Res Rev. 10:61–66.
  • Turner CH, Burr DB. 1993. Basic biomechanical measurements of bone: a tutorial. Bone. 14(4):595–608.
  • Turner CH, Cowin SC, Rho JY, Ashman RB, Rice JC. 1990. The fabric dependence of the orthotropic elastic constants of cancellous bone. J Biomech. 23(6):549–561.
  • Turner CH, Rho J, Takano Y, Tsui TY, Pharr GM. 1999. The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques. J Biomech. 32(4):437–441.
  • Wang J, Zhou B, Liu XS, Fields AJ, Sanyal A, Shi X, Adams M, Keaveny TM, Guo XE. 2015. Trabecular plates and rods determine elastic modulus and yield strength of human trabecular bone. Bone. 72:71–80.
  • Weatherholt AM, Fuchs RK, Warden SJ. 2012. Specialized connective tissue: bone, the structural framework of the upper extremity. J Hand Ther. 25(2):123–132.
  • Zhou B, Sherry Liu X, Wang J, Lucas Lu X, Fields AJ, Edward Guo X. 2014. Dependence of mechanical properties of trabecular bone on plate-rod microstructure determined by individual trabecula segmentation (ITS). J Biomech. 47(3):702–708.
  • Zhou B, Wang J, Yu YE, Zhang Z, Nawathe S, Nishiyama KK, Rosete FR, Keaveny TM, Shane E, Guo XE. 2016. High-resolution peripheral quantitative computed tomography (HR-pQCT) can assess microstructural and biomechanical properties of both human distal radius and tibia: ex vivo computational and experimental validations. Bone. 86:58–67.
  • Zysset PK, Goulet RW, Hollister SJ. 1998. A global relationship between trabecular bone morphology and homogenized elastic properties. J Biomech Eng. 120(5):640–640.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.