781
Views
26
CrossRef citations to date
0
Altmetric
Articles

Computational fluid dynamic simulation of two-fluid non-Newtonian nanohemodynamics through a diseased artery with a stenosis and aneurysm

, , , &
Pages 345-371 | Received 09 Nov 2019, Accepted 11 Feb 2020, Published online: 26 Feb 2020

References

  • Ali N, Zaman A, Sajid M. 2014. Unsteady blood flow through a tapered stenotic artery using Sisko model. Comp Fluids. 101:42–49.
  • Abdul Khader SM, Ayachit A, Raghuvir Pai B, Rao VRK, Ganesh Kamath S. 2012. FSI simulation of common carotid under normal and high blood pressures. Adv Mech Eng. 4:140579.
  • Agrawal V, Paul C, Das MK, Muralidhar K. 2015. Effect of coil embolization on blood flow through a saccular cerebral aneurysm. Sadhana. 40(3):875–887.
  • Ahmadi MH, Mirlohi A, Nazari MA, Ghasempour R. 2018. A review of thermal conductivity of various nanofluids. J Mol Liq. 265:181–188.
  • Akbar NS, Nadeem S, Ali M. 2011. Jeffrey fluid model for blood flow through a tapered artery with a stenosis. J Mech Med Biol. 11(03):529–545.
  • Akbar NS, Tripathi D, Anwar Bég O. 2017. Variable-viscosity thermal hemodynamic slip flow conveying nanoparticles through a permeable-walled composite stenosed artery. European Physical Journal Plus. 132:294–305.
  • Akbar N. S, Tripathi D, Bég O. A. 2015. Modelling nanoparticle geometry effects on peristaltic lumping of medical magnetohydrodynamic nanofluids with heat transfer. J Mech Med Biol. 16(2):1650088.1-1650088–20.
  • AlAmiri A, Khanafer K, Vafai K. 2014. Fluid-structure interactions in a tissue during hyperthermia. Numer Heat Transf, A: Appl. 66(1):1–16.
  • Ali N, Zaman A, Sajid M, Bég A O, Shamshuddin M. D, Kadir A. 2018. Numerical simulation of time-dependent non-Newtonian nano-pharmacodynamic transport phenomena in a tapered overlapping stenosed artery. Nano Sci Technol Int J. 9(3):247–282.
  • Anwar Bég O. 2012. Numerical methods for multi-physical magnetohydrodynamics. In: Ibragimov MJ, Anisimov MA, editors. New developments in hydrodynamics research, chapter 1. New York: Nova Science; p. 1–112.
  • Anwar Bég O. 2018. Nonlinear multi-physical laminar nanofluid bioconvection flows: Models and computation. In: Sohail A, Li Z, editors. Computational approaches in biomedical nano-engineering, Chapter 5. Weinheim, Germany: Wiley; p. 113–145.
  • Anwar Bég O, Rashidi MM, Akbari M, Hosseini A. 2014. Comparative numerical study of single phase and two-phase models for bio-nanofluid transport phenomena. J Mech Med Biol. 14:1450011.1–31.
  • Baieth, HEA, 2008. Physical parameters of blood as a non-Newtonian fluid. Int J Biomed Sci. 4(4):323–329.
  • Bali R, Awasthi U. 2011. Mathematical model of blood flow in the small blood vessel in presence of magnetic field. Appl Math. 2(2):264–269.
  • Bali R, Awasthi U. 2012. A Casson fluid model for multiple stenosed artery in the presence of magnetic field. Appl Math. 3(5):436–441.
  • Bathe KJ. 1996. Finite element procedures. New York: Prentice-Hall
  • Blair GWS. 1959. An equation for the flow of blood, plasma and serum through glass capillaries. Nature. 183(4661):613–614. vol
  • Bluestein D, Niu L, Schoephoerster RT, Dewanjee MK. 1997. Fluid mechanics of arterial stenosis: relationship to the development of mural thrombus. Ann Biomed Eng. 25(2):344–356.
  • Bluestein D, Niu L, Schoephoerster RT, Dewanjee MK. 1996. Steady flow in an aneurysm model: correlation between fluid dynamics and blood platelet deposition. ASME J Biomech Eng. 118(3):280–286.
  • Bodnár T, Galdi GP, Nečasová Š, editors. 2014. Fluid-structure interaction and biomedical applications. Basel: Springer
  • Buongiorno J. 2006. Convective transport in nanofluids. ASME J Heat Transfer. 128(3):240–250.
  • Casson N. 1959. Rheology of disperse systems. In: Mill CC, editor, Flow equations for pigment oil suspensions of the printing ink type. Rheology of disperse systems. London, UK: Pergamon Press; p. 84–102
  • Chakravarty S, Kumar M P. 2000. Two-dimensional blood flow through tapered arteries under stenotic conditions. Int J Non Linear Mech. 35(5):779–793.
  • Chakravarty S, Mandal PK. 1994. Mathematical modelling of blood flow through an overlapping arterial stenosis. Math Comput Modell. 19(1):59–70.
  • Chakravarty S, Mandal PK. 2014. Numerical simulation of Casson fluid flow through differently shaped arterial stenoses. Z Angew Math Phys. 65(4):767–782.
  • Chen M. M, Holmes K. R. 1980. Microvascular contributions in tissue heat transfer. Ann NY Acad Sci. 335(1 Thermal Chara):137–151. 0077-8923,
  • Choi SUS, Eastman JA. 1995. Enhancing thermal conductivity of fluids with nanoparticles. No. ANL/MSD/CP-84938; CONF-951135-29. Argonne National Lab., IL (United States), ASME-Publications-Fed. 231:99–106.
  • Copley AL. 1960. Apparent viscosity and wall adherence of blood systems. In Copley AL, Stainsly G., editors. Flow properties of blood and other biological systems. Pergamon Press, Oxford, UK ;p. 97-117.
  • da Costa Santos PH. 2015. Development of a biodegradable nanofluid for brain drug delivery [Master Science in Biomedical Engineering]. Portugal: University of Coimbra.
  • Das SK, Choi SU, Yu W, Pradeep T. 2007. Nanofluids: science and technology. Honboken, New Jersey: CRC Press; p. 416.
  • Dubey A, Vasu B. 2019. Finite element analysis of MHD blood flow in stenosed coronary artery with the suspension of nanoparticles. International Conference on Mathematical Modelling and Scientific Computation; Singapore: Springer Nature.p. 219–239.
  • Elabbasi N, Bathe K-J. 2003. Some advances in modelling multiphysics-biomedical applications. Second MIT Conference on Computational Fluid and Solid Mechanics, MIT, USA, June
  • Eldesoky IM. 2012. Slip effects on the unsteady MHD pulsatile Blood flow through porous medium in an artery under the effect of body acceleration. Int J Math Math Sci. 2012:1–26. Article ID860239.
  • Ellahi R, Rahman SU, Gulzar M, Nadeem S, Vafai K. 2014. A mathematical study of non- Newtonian micropolar fluid in arterial blood flow through composite stenosis. Appl Math Inf Sci. 4:1567–1573.
  • Ellahi R, Rahman SU, Nadeem S, Akbar NS. 2014. Blood flow of nanofluid through an artery with composite stenosis and permeable walls. Appl Nanosci. 4(8):919–926.
  • Farooq M, Ijaz Khan M, Waqas M, Hayat T, Alsaedi A, Imran Khan M. 2016. MHD stagnation point flow of viscoelastic nanofluid with non-linear radiation effects. J Mol Liq. 221:1097–1103.
  • Giljohann D A, Seferos D S, Daniel W L, Massich M D, Patel P C, Mirkin C A. 2010. Gold nanoparticles for biology and medicine. Angew Chem Int Ed. 49(19):3280–3294.
  • Gupta R, Mohan I, Narula J. 2016. Trends in coronary heart disease epidemiology in India. Ann Global Health. 82(2):307–315.
  • Haghighi AR, Chalak SA. 2017. Mathematical modelling of blood flow through a stenosed artery under body acceleration. J Braz Soc Mech Sci Eng. 39(7):2487–2494.
  • Hayat T, Ijaz Khan M, Waqas M, Alsaedi A, Khan MI. 2017. Radiative flow of micropolar nanofluid accounting thermophoresis and Brownian moment. Int J Hydrogen Energy. 42(26):16821–16833.
  • Hayat T, Waqas M, Khan MI, Alsaedi A. 2016. Analysis of thixotropic nanomaterial in a doubly stratified medium considering magnetic field effects. Int J Heat Mass Transf. 102:1123–1129.
  • Hecht F. 2012. New development in FreeFEM++. J Numer Math. 20:251–266.
  • Jain M, Sharma GC, Singh R. 2010. Mathematical modelling of blood flow in a stenosed artery under MHD effect through porous medium. Int J Eng, Trans B. 23(3-4):243–251.
  • Karimi S, Dadvar M, Dabagh M, Jalali P, Modarress H, Dabir B. 2013. Simulation of pulsatile blood flow through stenotic artery considering different blood rheologies: comparision of 3D and 2D- axisymmetric models. Biomed Eng Appl Basis Commun. 25(02):1350023.
  • Karimi M, Zare H, Bakhshian Nik A, Yazdani N, Hamrang M, Mohamed E, Sahandi Zangabad P, Moosavi Basri S M, Bakhtiari L, Hamblin M R. 2016. Nanotechnology in diagnosis and treatment of coronary artery disease. Nanomedicine. 11(5):513–530.
  • Khanafer K, Berguer R. 2009. Fluid–structure interaction analysis of turbulent pulsatile flow within a layered aortic wall as related to aortic dissection. J Biomech. 42(16):2642–2648.
  • Kumar BVR, Naidu KB. 1995. Finite element analysis of nonlinear pulsatile suspension flow dynamics in blood vessels with aneurysm. Comp Biol Med. 25:1–20. pp
  • Kumar K. P, Paul W, Sharma C P. 2007. Green synthesis of gold nanoparticles with Zingiber officinale extract: characterization and blood compatibility. Process Biochem. 46(10):2013–2011.
  • Kuznetsov AV, Nield DA. 2014. Natural convective boundary-layer flow of a nanofluid past a vertical plate: A revised model. Int J Therm Sci. 77:126–129.
  • Masuda H, Ebata A, Teramae K, Hishinuma N. 1993. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles. Japan J Thermophys Propert. 7(4):227–233.
  • Mekheimer KS, El Kot MA. 2012. Mathematical modelling of unsteady flow of a Sisko fluid through an anisotropically tapered elastic arteries with time-variant overlapping stenosis. Appl Math Modell. 36(11):5393–5407.
  • Merrill EW. 1965. Rheology of human blood and some speculations on its role in vascular homeostasis. In: Sawyer PN, editor, Biomechanical mechanisms in vascular homeostasis and intravascular thrombosis. New York: Appleton-Century-Crofts; p. 121–137.
  • Mishra BK. 2003. A Mathematical model for the analysis of blood flow in arterial stenosis. Math Educ. XXXVII(IV):176–181.
  • Mishra S, Siddiqui SU, Medhavi A. 2011. Blood flow through a composite stenosis in an artery with permeable wall. Appl Appl Math. 6(1):1798–1813.
  • Mukhopadhyay S, Layek GC. 2011. Analysis of blood flow through a modelled artery with an aneurysm. Appl Math Comput. 217(16):6792–6801.
  • Nadeem S, Ijaz S. 2015. Influence of metallic nanoparticles on blood flow through arteries having both stenosis and aneurysm. IEEE Transon Nanobioscience. 14(6):668–679.
  • Park K. 2007. Nanotechnology: What it can do for drug delivery. J. Control Release. 120(1/2):1–3.
  • Priyadharshini S, Ponalagusamy R. 2017. Computational model on pulsatile flow of blood through a tapered arterial stenosis with radially variable viscosity and magnetic field. Sadhana. 42(11):1901–1913.
  • Raj Sha M. M, Mathew S, Udayan S, Nampoori V. P. N, Mujeeb A. 2018. Ultra-pure silicon nanofluid by laser ablation: thermal diffusivity studies using thermal lens technique. Appl Phys B. 124(11):213.
  • Ray A K, Vasu B, Anwar Bég O, Gorla R SR, Murthy P. V. S. N. 2019. Homotopy semi-numerical modeling of non-Newtonian nanofluid transport external to multiple geometries using a revised Buongiorno Model. Inventions. 4(4):54.
  • Razavi A, Shirani E, Sadeghi MR. 2011. Numerical simulation of blood pulsatile flow in a stenosed carotid artery using different rheological models. J. Biomech. 44(11):2021–2030.
  • Reddy JVR, Srikanth D, Murthy SK. 2014. Mathematical modelling of couple stresses on fluid flow in constricted tapered artery in presence of slip velocity-effects of catheter. Appl Math Mech-Engl Ed. 35(8):947–958.
  • Rhee J-W, Wu J C. 2013. Advances in nanotechnology for the management of coronary artery disease. Trends Cardiovasc Med. 23(2):39–45.
  • Riahi DN, Roy R, Cavazos S. 2011. On arterial blood flow in the presence of an overlapping stenosis. Math Comput Model. 54(11/12):2999–3006.
  • Rizvi SAA, Saleh AM. 2018. Applications of nanoparticle systems in drug delivery technology. Saudi Pharmaceut J. 26(1):64–70.
  • Sauvage E. 2014. Patient-specific blood flow modelling [Ph. D. thesis]. Belgium: Université Catholique de Louvain.
  • Schitzer A, Eberhart RC, editors. 1985. Heat transfer in medicine and biology. New York: Plenum Press; Vol. II.
  • Schmid-Schönbein GW, Usami S, Skalak R, Chien S. 1980. The interaction of leukocytes and erythrocytes in capillary and postcapillary vessels. Microvasc Res. 19(1):45–70.
  • Shen Y, Tang H, Zhan Y, Van Kirk EA, Murdoch WJ. 2009. Degradable poly (beta-amino ester) nanoparticles for cancer cytoplasmic drug delivery. Nanomedicine Nanotechnol Biol Med. 5(2):192–201.
  • Srivastav RK. 2014. Mathematical model of blood flow through a composite stenosis in catheterized artery with permeable wall. Appl Appl Math. 99:58–74.
  • Taylor MG. 1959. The influence of the anomalous viscosity of blood upon its oscillatory flow. Phys Med Biol. 3(3):273–290.
  • Thiriet M. 2011. Biomathematical and biomechanical modelling of the circulatory and ventilatory systems. Vol 2: control of cell fate in the circulatory and ventilatory systems. New York: Springer Math& Biological Modelling.
  • Tripathi D. 2012. A mathematical model for blood flow through an inclined artery under the influence of an inclined magnetic field. J Mech Med Biol. 12(03):1250033–1250018. vol
  • Tripathi D, Sharma A, Anwar Bég O. 2017. Electrothermal transport of nanofluids via peristaltic pumping in a finite micro-channel: effects of Joule heating and Helmholtz-Smoluchowski velocity. Int. J. Heat Mass Transfer. 111:138–149.
  • Uddin MJ, Kabir MN, Anwar Bég O, Alginahi Y. 2018. Chebyshev collocation computation of magneto-bio convection nanofluid flow over a wedge with multiple slips and magnetic induction. Proc. IMechE: Part N–J Nanomater, Nanoeng Nanosyst, 232(4):109–122.
  • Vasu B, Dubey A, Anwar Bég O. 2019. Finite element analysis of non‐Newtonian magnetohemodynamic flow conveying nanoparticles through a stenosed coronary artery. Heat Transfer—Asian Research. :1–34..
  • Wang I, Stoltz J.F. 1994. Influence of non-Newtonian properties of blood on the global transport of red blood cells. Clin Hemorheol. 14(6):789–796.
  • Waqas M, Ijaz Khan M, Hayat T, Alsaedi A. 2017. Stratified flow of an Oldroyd-B nanoliquid with heat generation. Results Phys. 7:2489–2496.
  • Wong KFV, Bon BN, Vu S, Samedi S. 2007. Study of nanofluid natural convection phenomena in rectangular enclosures. ASME International Mechanical Engineering Congress and Exposition (IMECE ‘07), Seattle, Wash, November, vol. 6, pp. 3–13,
  • Yan Y, Sun T, Zhang H, Ji X, Sun Y, Zhao X, Deng L, Qi J, Cui W, Santos HA, et al. 2019. Euryale ferox seed‐inspired super-lubricated nanoparticles for treatment of osteoarthritis. Adv Funct Mater. 29(4):1807559.
  • Young DF, Tsai FY. 1973. Flow characteristics in models of arterial stenoses II: unsteady flow. J. Biomechanics. 6(5):547–559.
  • Zaman A, Ali N, Anwar O. 2015. Numerical study of unsteady blood flow through a vessel using Sisko model. JESTECH 19(1), 538–547.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.