216
Views
8
CrossRef citations to date
0
Altmetric
Articles

On biological availability dependent bone remodeling

ORCID Icon, &
Pages 432-444 | Received 11 Dec 2019, Accepted 25 Feb 2020, Published online: 04 Mar 2020

References

  • Barkaoui A, Kahla RB, Merzouki T, Hambli R. 2017. Age and gender effects on bone mass density variation: finite elements simulation. Biomech Model Mechanobiol. 16(2):521–535.
  • Bellomo FJ, Oller S, Armero F, Nallim LG. 2011. A general constitutive model for vascular tissue considering stress driven growth and biological availability. Comput Model Eng Sci. 80(1):1–21.
  • Carter DR, Beauprè GS. 2001. Skeletal function and form - mechanobiology of skeletal development, aging and regeneration. Cambridge (MA): Cambridge University Press.
  • Carter DR, Hayes WC. 1977. The behavior of bone as a two-phase porous structure. J Bone and Joint Surg. 59-A:785–794.
  • Comellas Sanfeliu E. 2015. Numerical modelling of the growth and remodelling phenomena in biological tissues [dissertation]. Barcelona TECH.
  • Cowin SC, Hegedus DH. 1976. Bone remodelling I: Theory of adaptive elasticity. J Elast. 6(3):313–326.
  • Dahan G, Trabelsi N, Safran O, Yosibash Z. 2016. Verified and validated finite element analyses of humeri. J Biomech. 49(7):1094–1102.
  • Frost HM. 1987. Bone mass and the mechanostat: A proposal. Anat Rec. 219(1):1–9.
  • Gibson LJ. 2005. Biomechanics of cellular solids. J Biomech. 38 (3):377–399.
  • Gibson LJ, Ashby MF. 1982. The mechanics of three-dimensional cellular materials. Proc. R. Soc. London, Ser. A 382:43–59.
  • Harrigan TP, Hamilton JJ. 1993. Finite element simulation of adaptive bone remodelling: A stability criterion and a time stepping method. Int J Numer Meth Engng. 36(5):837–854.
  • Harrigan TP, Hamilton JJ. 1994. Necessary and sufficient conditions for global stability and uniqueness in finite element simulations of adaptive bone remodeling. Int J Solids Struct. 31(1):97–107.
  • Holzapfel GA. 2001. Nonlinear solid mechanics - a continuum approach for engineering. West Sussex, England: John Wiley and Sons.
  • Huiskes R, Weinans H, Grootenboer HJ, Dalstra M, Fudala B, Slooff TJ. 1987. Adaptive bone—remodeling theory applied to prosthetic—design analysis. J Biomech. 20(11-12):1135–1150.
  • Jacobs CE, Levenston ME, Beauprè GS, Simo JC, Carter DR. 1995. Numerical instabilities in bone remodeling simulations: The advantages of a node-based finite element approach. J Biomech. 28(4):449–459.
  • Kaczmarczyk Ł, Pearce CJ. 2011. Efficient numerical analysis of bone remodelling. J Mech Behav Biomed Mater. 4(6):858–867.
  • Kuhl E, Menzel A, Steinmann P. 2003. Computational modeling of growth - a critical review, a classification of concepts and two new consistent approaches. Comp Mech. 32(1-2):71–88.
  • Kuhl E, Steinmann P. 2003. Theory and numerics of geometrically non-linear open system mechanics. Int J Num Meth Engng. 58(11):1593–1615.
  • Louna Z, Goda I, Ganghoffer JF. 2019. Homogenized strain gradient remodeling model for trabecular bone microstructures. Continuum Mech Thermodyn. 31(5):1339–1367.
  • Louna Z, Goda I, Ganghoffer JF, Benhadid S. 2017. Formulation of an effective growth response of trabecular bone based on micromechanical analyses at the trabecular level. Arch Appl Mech. 87(3):457–477.
  • Papastavrou A, Schmidt I, Deng K, Steinmann P. 2020. On age-dependent bone remodeling. J Biomech. DOI:10.1016/j.jbiomech.2020.109701.
  • Pivonka P. 2018. Multiscale mechanobiology of bone remodeling and adaptation. Springer. CISM International Centre for Mechanical Sciences.
  • Taber LA. 1995. Biomechanics of growth, remodeling, and morphogenesis. Appl Mech Rev (ASME). 48(8):487–545.
  • Weinans H, Huiskes R, Grootenboer HJ. 1992. The behavior of adaptive bone-remodeling simulation models. J Biomech. 25(12):1425–1441.
  • Wolff J. 1892. Das gesetz der knochentransformation. Berlin: Hirschwald.
  • Wu G, van der Helm FCT, (DirkJan) Veeger HEJ, Makhsous M, Van Roy P, Anglin C, Nagels J, Karduna AR, McQuade K, Wang X, et al. 2005. Isb recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion - part ii: shoulder, elbow, wrist and hand. J Biomech. 38(5):981–992.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.