1,068
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Image-based finite-element modeling of the human femur

&
Pages 1138-1161 | Received 22 Jan 2020, Accepted 27 Jun 2020, Published online: 12 Jul 2020

References

  • Ali AA, Cristofolini L, Schileo E, Hu H, Taddei F, Kim RH, Rullkoetter PJ, Laz PJ. 2014. Specimen-specific modeling of hip fracture pattern and repair. J Biomech. 47(2):536–543. http://dx.doi.org/10.1016/j.jbiomech.2013.10.033.
  • Almeida DF, Ruben RB, Folgado J, Fernandes PR, Audenaert E, Verhegghe B, De Beule M. 2016. Fully automatic segmentation of femurs with medullary canal definition in high and in low resolution CT scans. Med Eng Phys. 38(12):1474–1480. http://dx.doi.org/10.1016/j.medengphy.2016.09.019.
  • Alsayednoor J, Metcalf L, Rochester J, Dall'Ara E, McCloskey E, Lacroix D. 2018. Comparison of HR-pQCT- and microCT-based finite element models for the estimation of the mechanical properties of the calcaneus trabecular bone. Biomech Model Mechanobiol. 17(6):1715–1730.
  • Amin S, Kopperdhal DL, Melton LJ, Achenbach SJ, Therneau TM, Riggs BL, Keaveny TM, Khosla S. 2011. Association of hip strength estimates by finite-element analysis with fractures in women and men. J Bone Miner Res. 26(7):1593–1600.
  • Anderson AE, Ellis BJ, Weiss JA. 2007. Verification, validation and sensitivity studies in computational biomechanics. Comput Methods Biomech Biomed Eng. 10(3):171–184.
  • Anez-Bustillos L, Derikx LC, Verdonschot N, Calderon N, Zurakowski D, Snyder BD, Nazarian A, Tanck E. 2014. Finite element analysis and CT-based structural rigidity analysis to assess failure load in bones with simulated lytic defects. Bone [Internet]. 58:160–167. http://dx.doi.org/10.1016/j.bone.2013.10.009.
  • Argüello D, Sánchez Acevedo HG, González-Estrada OA. 2019. Comparison of segmentation tools for structural analysis of bone tissues by finite elements. J Phys Conf Ser. 1386: 012113.
  • Ariza O, Gilchrist S, Widmer RP, Guy P, Ferguson SJ, Cripton PA, Helgason B. 2015. Comparison of explicit finite element and mechanical simulation of the proximal femur during dynamic drop-tower testing. J Biomech. 48(2):224–232. http://dx.doi.org/10.1016/j.jbiomech.2014.11.042.
  • Bardyn T, Reyes M, Larrea X, Buechler P. 2009. Influence of smoothing on voxel-based mesh accuracy in micro-finite element. New York (NY): Springer.
  • Ben Younes L, Nakajima Y, Saito T. 2014. Fully automatic segmentation of the Femur from 3D-CT images using primitive shape recognition and statistical shape models. Int J Comput Assist Radiol Surg. 9(2):189–196.
  • Bernard S, Schneider J, Varga P, Laugier P, Raum K, Grimal Q. 2016. Elasticity–density and viscoelasticity–density relationships at the tibia mid-diaphysis assessed from resonant ultrasound spectroscopy measurements. Biomech Model Mechanobiol. 15(1):97–109.
  • Besler BA, Michalski AS, Forkert ND, Boyd SK, 2018. Automatic Full Femur Segmentation from Computed Tomography Datasets Using an Atlas-Based Approach. In: Glocker B, Yao J, Vrtovec T, Frangi A, Zheng G, editors. Comput Methods Clin Appl Musculoskelet Imaging MSKI 2017 Lect Notes Comput Sci [Internet]. 10734:0–15. http://link.springer.com/10.1007/978-3-319-74113-0.
  • Bessho M, Ohnishi I, Matsumoto T, Ohashi S, Matsuyama J, Tobita K, Kaneko M, Nakamura K. 2009. Prediction of proximal femur strength using a CT-based nonlinear finite element method: differences in predicted fracture load and site with changing load and boundary conditions. Bone [Internet]. 45(2):226–231. http://www.ncbi.nlm.nih.gov/pubmed/19398043.
  • Bessho M, Ohnishi I, Matsuyama J, Matsumoto T, Imai K, Nakamura K. 2007. Prediction of strength and strain of the proximal femur by a CT-based finite element method. J Biomech. 40(8):1745–1753.
  • Bettamer A, Hambli R, Allaoui S, Almhdie-Imjabber A. 2017. Using visual image measurements to validate a novel finite element model of crack propagation and fracture patterns of proximal femur. Comput Methods Biomech Biomed Eng Imaging Vis. 5(4):251–262.
  • Bhattacharya P, Altai Z, Qasim M, Viceconti M. 2019. A multiscale model to predict current absolute risk of femoral fracture in a postmenopausal population. Biomech Model Mechanobiol. 18(2):301–318.
  • Bouxsein ML. 2005. Determinants of skeletal fragility. Best Pract Res Clin Rheumatol. 19(6):897–911.
  • Boyd SK, Müller R. 2006. Smooth surface meshing for automated finite element model generation from 3D image data. J Biomech. 39(7):1287–1295.
  • Boykov Y, Funka-Lea G. 2006. Graph cuts and efficient N-D image segmentation. Int J Comput Vision. 70(2):109–131.
  • Burt LA, Macdonald HM, Hanley DA, Boyd SK. 2014. Bone microarchitecture and strength of the radius and tibia in a reference population of young adults: an HR-pQCT study. Arch Osteoporos. 9(1):183.
  • Camacho DLA, Hopper RH, Lin GM, Myers BS. 1997. An improved method for finite element mesh generation of geometrically complex structures with application to the skullbase. J Biomech. 30(10):1067–1070.
  • Carballido-Gamio J, Bonaretti S, Saeed I, Harnish R, Recker R, Burghardt AJ, Keyak JH, Harris T, Khosla S, Lang TF. 2015. Automatic multi-parametric quantification of the proximal femur with quantitative computed tomography. Quant Imaging Med Surg. 5(4):552–55268.
  • Carpenter RD, Saeed I, Bonaretti S, Schreck C, Keyak JH, Streeper T, Harris TB, Lang TF. 2014. Inter-scanner differences in in vivo QCT measurements of the density and strength of the proximal femur remain after correction with anthropomorphic standardization phantoms. Med Eng Phys [Internet]. 36(10):1225–1232. http://dx.doi.org/10.1016/j.medengphy.2014.06.010.
  • Chandran V, Maquer G, Gerig T, Zysset P, Reyes M. 2019. Supervised learning for bone shape and cortical thickness estimation from CT images for finite element analysis. Med Image Anal. 52:42–55.
  • Chen G, Wu FY, Liu ZC, Yang K, Cui F. 2015. Comparisons of node-based and element-based approaches of assigning bone material properties onto subject-specific finite element models. Med Eng Phys. 37(8):808–812.
  • Chen Y, Dall׳Ara E, Sales E, Manda K, Wallace R, Pankaj P, Viceconti M. 2017. Micro-CT based finite element models of cancellous bone predict accurately displacement once the boundary condition is well replicated: a validation study. J Mech Behav Biomed Mater. 65:644–651. http://dx.doi.org/10.1016/j.jmbbm.2016.09.014.
  • Cheung JTM, Zhang M, Leung AKL, Fan YB. 2005. Three-dimensional finite element analysis of the foot during standing-a material sensitivity study. J Biomech. 38(5):1045–1054.
  • Chu C, Chen C, Liu L, Zheng G. 2015. FACTS: fully automatic CT segmentation of a hip joint. Ann Biomed Eng. 43(5):1247–1259.
  • Cody DD, Gross GJ, Hou FJ, Spencer HJ, Goldstein SA, Fyhrie DP. 1999. Femoral strength is better predicted by finite element models than QCT and DXA. J Biomech. 32(10):1013–1020.
  • Completo A, Fonseca F, Simões JA. 2007. Experimental validation of intact and implanted distal femur finite element models. J Biomech. 40(11):2467–2476.
  • Cristofolini L, Conti G, Juszczyk M, Cremonini S, Sint Jan S, Van Viceconti M. 2010. Structural behaviour and strain distribution of the long bones of the human lower limbs. J Biomech. 43(5):826–835. http://dx.doi.org/10.1016/j.jbiomech.2009.11.022.
  • Cristofolini L, Juszczyk M, Martelli S, Taddei F, Viceconti M. 2007. In vitro replication of spontaneous fractures of the proximal human femur. J Biomech. 40(13):2837–2845.
  • Cristofolini L, Viceconti M. 1997. Comparison of uniaxial and triaxial rosette gages for strain measurement in the femur. Exp Mech. 37(3):350–354.
  • Dall'Ara E, Eastell R, Viceconti M, Pahr D, Yang L. 2016. Experimental validation of DXA-based finite element models for prediction of femoral strength. J Mech Behav Biomed Mater. 63:17–25. http://dx.doi.org/10.1016/j.jmbbm.2016.06.004.
  • Dall'Ara E, Luisier B, Schmidt R, Kainberger F, Zysset P, Pahr D. 2013. A nonlinear QCT-based finite element model validation study for the human femur tested in two configurations in vitro. Bone [Internet]. 52(1):27–38. http://dx.doi.org/10.1016/j.bone.2012.09.006.
  • Damron TA, Nazarian A, Entezari V, Brown C, Grant W, Calderon N, Zurakowski D, Terek RM, Anderson ME, Cheng EY, et al. 2016. CT-based structural rigidity analysis is more accurate than Mirels scoring for fracture prediction in metastatic femoral lesions. Clin Orthop Relat Res. 474(3):643–651.
  • Derikx LC, Vis R, Meinders T, Verdonschot N, Tanck E. 2011. Implementation of asymmetric yielding in case-specific finite element models improves the prediction of femoral fractures. Comput Methods Biomech Biomed Eng. 14(2):183–193.
  • DeVries NA, Gassman EE, Kallemeyn NA, Shivanna KH, Magnotta VA, Grosland NM. 2008. Validation of phalanx bone three-dimensional surface segmentation from computed tomography images using laser scanning. Skeletal Radiol. 37(1):35–42.
  • Dopico-González C, New AM, Browne M. 2010. Probabilistic finite element analysis of the uncemented hip replacement-effect of femur characteristics and implant design geometry. J Biomech. 43(3):512–520.
  • Dragomir-Daescu D, Op Den Buijs J, McEligot S, Dai Y, Entwistle RC, Salas C, Melton LJ, Bennet KE, Khosla S, Amin S. 2011. Robust QCT/FEA models of proximal femur stiffness and fracture load during a sideways fall on the hip. Ann Biomed Eng. 39(2):742–755.
  • Dragomir-Daescu D, Salas C, Uthamaraj S, Rossman T. 2015. Quantitative computed tomography-based finite element analysis predictions of femoral strength and stiffness depend on computed tomography settings. J Biomech [Internet]. 48(1):153–161. http://dx.doi.org/10.1016/j.jbiomech.2014.09.016.
  • Duchemin L, Bousson V, Raossanaly C, Bergot C, Laredo JD, Skalli W, Mitton D. 2008. Prediction of mechanical properties of cortical bone by quantitative computed tomography. Med Eng Phys. 30(3):321–328.
  • Duchemin L, Mitton D, Jolivet E, Bousson V, Laredo JD, Skalli W. 2008. An anatomical subject-specific FE-model for hip fracture load prediction. Comput Methods Biomech Biomed Eng. 11(2):105–111.
  • Dufour AB, Roberts B, Broe KE, Kiel DP, Bouxsein ML, Hannan MT. 2012. The factor-of-risk biomechanical approach predicts hip fracture in men and women: the Framingham Study. Osteoporos Int. 23(2):513–520.
  • Eberle S, Göttlinger M, Augat P. 2013. An investigation to determine if a single validated density-elasticity relationship can be used for subject specific finite element analyses of human long bones. Med Eng Phys. 35(7):875–883. http://dx.doi.org/10.1016/j.medengphy.2012.08.022.
  • Eggermont F, Derikx LC, Free J, van Leeuwen R, van der Linden YM, Verdonschot N, Tanck E. 2018. Effect of different CT scanners and settings on femoral failure loads calculated by finite element models. J Orthop Res. 36(8):2288–2295.
  • Eggermont F, van der Wal G, Westhoff P, Laar A, de Jong M, Rozema T, Kroon HM, Ayu O, Derikx L, Dijkstra S, et al. 2020. Patient-specific finite element computer models improve fracture risk assessments in cancer patients with femoral bone metastases compared to clinical guidelines. Bone [Internet]. 130:115101.
  • Eggermont F, Verdonschot N, van der Linden Y, Tanck E. 2019. Calibration with or without phantom for fracture risk prediction in cancer patients with femoral bone metastases using CT-based finite element models. PLoS One. 14(7):e0220564.
  • Enns-Bray WS, Ariza O, Gilchrist S, Widmer Soyka RP, Vogt PJ, Palsson H, Boyd SK, Guy P, Cripton PA, Ferguson SJ, et al. 2016. Morphology based anisotropic finite element models of the proximal femur validated with experimental data. Med Eng Phys. 38(11):1339–1347.
  • Enns-Bray WS, Bahaloo H, Fleps I, Ariza O, Gilchrist S, Widmer R, Guy P, Pálsson H, Ferguson SJ, Cripton PA, et al. 2018. Material mapping strategy to improve the predicted response of the proximal femur to a sideways fall impact. J Mech Behav Biomed Mater. 78:196–205.
  • Enns-Bray WS, Bahaloo H, Fleps I, Pauchard Y, Taghizadeh E, Sigurdsson S, Aspelund T, Büchler P, Harris T, Gudnason V, et al. 2019. Biofidelic finite element models for accurately classifying hip fracture in a retrospective clinical study of elderly women from the AGES Reykjavik cohort. Bone [Internet]. 120:25–37.
  • Enns-Bray WS, Owoc JS, Nishiyama KK, Boyd SK. 2014. Mapping anisotropy of the proximal femur for enhanced image based finite element analysis. J Biomech. 47(13):3272–3278. http://dx.doi.org/10.1016/j.jbiomech.2014.08.020.
  • Falcinelli C, Di Martino A, Gizzi A, Vairo G, Denaro V. 2019. Mechanical behavior of metastatic femurs through patient-specific computational models accounting for bone-metastasis interaction. J Mech Behav Biomed Mater. 93:9–22.
  • Falcinelli C, Di Martino A, Gizzi A, Vairo G, Denaro V. 2020. Fracture risk assessment in metastatic femurs: a patient-specific CT-based finite-element approach. Meccanica [Internet]. 55(4):861–881.
  • Falcinelli C, Schileo E, Balistreri L, Baruffaldi F, Bordini B, Viceconti M, Albisinni U, Ceccarelli F, Milandri L, Toni A, et al. 2014. Multiple loading conditions analysis can improve the association between finite element bone strength estimates and proximal femur fractures: a preliminary study in elderly women. Bone [Internet]. 67:71–80. http://dx.doi.org/10.1016/j.bone.2014.06.038.
  • Falcinelli C, Schileo E, Baruffaldi F, Cristofolini L, Taddei F. 2017. The effect of computed tomography current reduction on proximal femur subject-specific finite element models. J Mech Med Biol. 17(01):1750012.
  • Falcinelli C, Schileo E, Pakdel A, Whyne C, Cristofolini L, Taddei F. 2016. Can CT image deblurring improve finite element predictions at the proximal femur? J Mech Behav Biomed Mater. 63:337–351. http://dx.doi.org/10.1016/j.jmbbm.2016.07.004.
  • Ford CM, Keaveny TM, Hayes WC. 1996. The effect of impact direction on the structural capacity of the proximal femur during falls. J Bone Miner Res. 11(3):377–383.
  • Giambini H, Dragomir-Daescu D, Huddleston PM, Camp JJ, An K-N, Nassr A. 2015. The effect of quantitative computed tomography acquisition protocols on bone mineral density estimation. J Biomech Eng [Internet]. 137:114502. http://www.ncbi.nlm.nih.gov/pubmed/26355694%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4844109.
  • Goodheart JR, Cleary RJ, Damron TA, Mann KA. 2015. Simulating activities of daily living with finite element analysis improves fracture prediction for patients with metastatic femoral lesions. J Orthop Res. 33(8):1226–1234.
  • Grassi L, Schileo E, Taddei F, Zani L, Juszczyk M, Cristofolini L, Viceconti M. 2012. Accuracy of finite element predictions in sideways load configurations for the proximal human femur. J Biomech. 45(2):394–399. http://dx.doi.org/10.1016/j.jbiomech.2011.10.019.
  • Grassi L, Väänänen SP, Ristinmaa M, Jurvelin JS, Isaksson H. 2016. How accurately can subject-specific finite element models predict strains and strength of human femora? Investigation using full-field measurements. J Biomech [Internet]. 49(5):802–806. http://dx.doi.org/10.1016/j.jbiomech.2016.02.032.
  • Grassi L, Väänänen SP, Ristinmaa M, Jurvelin JS, Isaksson H. 2017. Prediction of femoral strength using 3D finite element models reconstructed from DXA images: validation against experiments. Biomech Model Mechanobiol. 16(3):989–1000.
  • Grau V, Mewes AUJ, Alcaniz M, Kikinis R, Warfield SK. 2004. Improved watershed transform for medical image segmentation using prior information. IEEE Trans Med Imaging. 23(4):447–458.
  • Guo H, Song S, Wang J, Guo M, Cheng Y, Wang Y, Tamura S. 2018. 3D surface voxel tracing corrector for accurate bone segmentation. Int J Comput Assist Radiol Surg. 13(10):1549–1563.
  • Haider IT, Speirs AD, Frei H. 2013. Effect of boundary conditions, impact loading and hydraulic stiffening on femoral fracture strength. J Biomech. 46(13):2115–2121. http://dx.doi.org/10.1016/j.jbiomech.2013.07.004.
  • Hambli R, Bettamer A, Allaoui S. 2012. Finite element prediction of proximal femur fracture pattern based on orthotropic behaviour law coupled to quasi-brittle damage. Med Eng Phys. 34(2):202–210. http://dx.doi.org/10.1016/j.medengphy.2011.07.011.
  • Hambli R. 2013. A quasi-brittle continuum damage finite element model of the human proximal femur based on element deletion. Med Biol Eng Comput. 51(1-2):219–231.
  • Hambli R. 2014. 3D finite element simulation of human proximal femoral fracture under quasi-static load. Adv Biomech Appl. 1(1):1–14.
  • Harris TB, Launer LJ, Eiriksdottir G, Kjartansson O, Jonsson PV, Sigurdsson G, Thorgeirsson G, Aspelund T, Garcia ME, Cotch MF, et al. 2007. Age, gene/environment susceptibility-Reykjavik study: multidisciplinary applied phenomics. Am J Epidemiol. 165(9):1076–1087.
  • Hazrati Marangalou J, Ito K, Cataldi M, Taddei F, Van Rietbergen B. 2013. A novel approach to estimate trabecular bone anisotropy using a database approach. J Biomech. 46(14):2356–2362. http://dx.doi.org/10.1016/j.jbiomech.2013.07.042.
  • Helgason B, Gilchrist S, Ariza O, Vogt P, Enns-Bray W, Widmer RP, Fitze T, Pálsson H, Pauchard Y, Guy P, et al. 2016. The influence of the modulus-density relationship and the material mapping method on the simulated mechanical response of the proximal femur in side-ways fall loading configuration. Med Eng Phys. 38(7):679–689.
  • Helgason B, Perilli E, Schileo E, Taddei F, Brynjólfsson S, Viceconti M. 2008. Mathematical relationships between bone density and mechanical properties: a literature review. Clin Biomech (Bristol, Avon)). 23(2):135–146.
  • Helgason B, Taddei F, Pálsson H, Schileo E, Cristofolini L, Viceconti M, Brynjólfsson S. 2008. A modified method for assigning material properties to FE models of bones. Med Eng Phys. 30(4):444–453.
  • Humbert L, Martelli Y, Fonolla R, Steghofer M, DI Gregorio S, Malouf J, Romera J, Barquero L. 2017. 3D-DXA: assessing the femoral shape, the trabecular macrostructure and the cortex in 3D from DXA images. IEEE Trans Med Imaging. 36(1):27–39.
  • Johannesdottir F, Allaire B, Bouxsein ML. 2018. Fracture prediction by computed tomography and finite element analysis: current and future perspectives. Curr Osteoporos Rep. 16(4):411–422.
  • Johannesdottir F, Thrall E, Muller J, Keaveny TM, Kopperdahl DL, Bouxsein ML. 2017. Comparison of non-invasive assessments of strength of the proximal femur. Bone [Internet]. 105:93–102.
  • Kaneko TS, Pejcic MR, Tehranzadeh J, Keyak JH. 2003. Relationships between material properties and CT scan data of cortical bone with and without metastatic lesions. Med Eng Phys. 25(6):445–454.
  • Kang Y, Engelke K, Kalender WA. 2003. A new accurate and precise 3-D segmentation method for skeletal structures in volumetric CT data. IEEE Trans Med Imaging. 22(5):586–598.
  • Katz Y, Dahan G, Sosna J, Shelef I, Cherniavsky E, Yosibash Z. 2019. Scanner influence on the mechanical response of QCT-based finite element analysis of long bones. J Biomech [Internet]. 86:149–159.
  • Katz Y, Yosibash Z. 2020. New insights on the proximal femur biomechanics using Digital Image Correlation. J Biomech. 101:109599.
  • Kawabata Y, Matsuo K, Nezu Y, Kamiishi T, Inaba Y, Saito T. 2017. The risk assessment of pathological fracture in the proximal femur using a CT-based finite element method. J Orthop Sci. 22(5):931–937. http://dx.doi.org/10.1016/j.jos.2017.05.015.
  • Keaveny TM, Clarke BL, Cosman F, Orwoll ES, Siris ES, Khosla S, Bouxsein ML. 2020. Biomechanical Computed Tomography analysis (BCT) for clinical assessment of osteoporosis. Osteoporos Int. 31(6):1025–1048.
  • Keaveny TM, Kopperdahl DL, Melton LJ, Hoffmann PF, Amin S, Riggs BL, Khosla S. 2010. Age-dependence of femoral strength in white women and men. J Bone Miner Res. 25(11):2542–1001.
  • Keller TS. 1994. Predicting the compressive mechanical behavior of bone. J Biomech [Internet]. 27: 1159–1168. https://ac.els-cdn.com/0021929094900566/1-s2.0-0021929094900566-main.pdf?_tid=8d666fce-c80c-4a37-aca9-81273747ef91&acdnat=1533750486_d321f579a14cb021bc34d7ab9d4d47f3.
  • Kersh ME, Zysset PK, Pahr DH, Wolfram U, Larsson D, Pandy MG. 2013. Measurement of structural anisotropy in femoral trabecular bone using clinical-resolution CT images. J Biomech [Internet]. 46(15):2659–2666. http://dx.doi.org/10.1016/j.jbiomech.2013.07.047.
  • Keyak JH, Falkinstein Y. 2003. Comparison of in situ and in vitro CT scan-based finite element model predictions of proximal femoral fracture load. Med Eng Phys. 25(9):781–787.
  • Keyak JH, Fourkas MG, Meagher JM, Skinner HB. 1993. Validation of an automated method of three-dimensional finite element modelling of bone. J Biomed Eng. 15(6):505–509.
  • Keyak JH, Kaneko TS, Tehranzadeh J, Skinner HB. 2005. Predicting proximal femoral strength using structural engineering models. Clin Orthop Relat Res. 437:219–228.
  • Keyak JH, Rossi SA, Jones KA, Skinner HB. 1998. Prediction of femoral fracture load using automated finite element modeling. J Biomech. 31(2):125–133.
  • Keyak JH, Rossi SA. 2000. Prediction of femoral fracture load using finite element models: an examination of stress- and strain-based failure theories. J Biomech. 33(2):209–214.
  • Keyak JH, Sigurdsson S, Karlsdottir G, Oskarsdottir D, Sigmarsdottir A, Zhao S, Kornak J, Harris TB, Sigurdsson G, Jonsson BY, et al. 2011. Male-female differences in the association between incident hip fracture and proximal femoral strength: a finite element analysis study. Bone [Internet]. 48(6):1239–1245. http://dx.doi.org/10.1016/j.bone.2011.03.682.
  • Keyak JH, Sigurdsson S, Karlsdottir GS, Oskarsdottir D, Sigmarsdottir A, Kornak J, Harris TB, Sigurdsson G, Jonsson BY, Siggeirsdottir K, et al. 2013. Effect of finite element model loading condition on fracture risk assessment in men and women: the AGES-Reykjavik study. Bone [Internet]. 57(1):18–29. http://dx.doi.org/10.1016/j.bone.2013.07.028.
  • Keyak JH, Skinner HB, Fleming JA. 2001. Effect of force direction on femoral fracture load for two types of loading conditions. J Orthop Res. 19(4):539–544.
  • Keyak JH. 2001. Improved prediction of proximal femoral fracture load using nonlinear finite element models. Med Eng Phys. 23(3):165–173.
  • Kim JJ, Nam J, Jang IG. 2018. Fully automated segmentation of a hip joint using the patient-specific optimal thresholding and watershed algorithm. Comput Methods Programs Biomed. 154:161–171.
  • Kluess D, Souffrant R, Mittelmeier W, Wree A, Schmitz KP, Bader R. 2009. A convenient approach for finite-element-analyses of orthopaedic implants in bone contact: modeling and experimental validation. Comput Methods Programs Biomed. 95(1):23–30.
  • Koivumäki JEM, Thevenot J, Pulkkinen P, Kuhn V, Link TM, Eckstein F, Jämsä T. 2012. Ct-based finite element models can be used to estimate experimentally measured failure loads in the proximal femur. Bone [Internet]. 50(4):824–829. http://dx.doi.org/10.1016/j.bone.2012.01.012.
  • Koivumäki JEM, Thevenot JÔ, Pulkkinen P, Kuhn V, Link TM, Eckstein F, Jämsä T. 2012. Cortical bone finite element models in the estimation of experimentally measured failure loads in the proximal femur. Bone [Internet]. 51(4):737–740. http://dx.doi.org/10.1016/j.bone.2012.06.026.
  • Kopperdahl DL, Aspelund T, Hoffmann PF, Sigurdsson S, Siggeirsdottir K, Harris TB, Gudnason V, Keaveny TM. 2014. Assessment of incident spine and hip fractures in women and men using finite element analysis of CT scans. J Bone Miner Res. 29(3):570–580.
  • Krčah M, Székely G, Blanc R. 2011. Fully automatic and fast segmentation of the femur bone from 3D-CT images with no shape prior. IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Chicago, IL, pp. 2087–2090. doi:10.1109/ISBI.2011.5872823.
  • Lang TF, Sigurdsson S, Karlsdottir G, Oskarsdottir D, Sigmarsdottir A, Chengshi J, Kornak J, Harris TB, Sigurdsson G, Jonsson BY, et al. 2012. Age-related loss of proximal femoral strength in elderly men and women: The Age Gene/Environment Susceptibility Study - Reykjavik. Bone [Internet]. 50(3):743–748. http://dx.doi.org/10.1016/j.bone.2011.12.001.
  • Langton CM, Pisharody S, Keyak JH. 2009a. Generation of a 3D proximal femur shape from a single projection 2D radiographic image. Osteoporos Int. 20(3):455–461.
  • Langton CM, Pisharody S, Keyak JH. 2009b. Comparison of 3D finite element analysis derived stiffness and BMD to determine the failure load of the excised proximal femur. Med Eng Phys. 31(6):668–672.
  • Lattanzi R, Baruffaldi F, Zannoni C, Viceconti M. 2004. Specialised CT scan protocols for 3-D pre-operative planning of total hip replacement. Med Eng Phys. 26(3):237–245.
  • Lee DC, Hoffmann PF, Kopperdahl DL, Keaveny TM. 2017. Phantomless calibration of CT scans for measurement of BMD and bone strength-Inter-operator reanalysis precision. Bone [Internet]. 103:325–333. http://www.ncbi.nlm.nih.gov/pubmed/28778598%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5636218.
  • Lee YH, Kim JJ, Jang IG. 2019. Patient-specific phantomless estimation of bone mineral density and its effects on finite element analysis results: a feasibility study. Comput Math Methods Med. 2019:1–10.
  • Lengsfeld M, Schmitt J, Alter P, Kaminsky J, Leppek R. 1998. Comparison of geometry-based and CT voxel-based finite element modelling and experimental validation. Med Eng Phys. 20(7):515–522.
  • Lotz JC, Cheal EJ, Hayes WC. 1991. Fracture prediction for the proximal femur using finite element models: Part II-Nonlinear analysis. J Biomech Eng. 113(4):361–365. http://www.ncbi.nlm.nih.gov/pubmed/1762431.
  • Luisier B, Dall'Ara E, Pahr DH. 2014. Orthotropic HR-pQCT-based FE models improve strength predictions for stance but not for side-way fall loading compared to isotropic QCT-based FE models of human femurs. J Mech Behav Biomed Mater. 32:287–299. http://dx.doi.org/10.1016/j.jmbbm.2014.01.006.
  • Luo Y, Ferdous Z, Leslie WD. 2013. Precision study of DXA-based patient-specific finite element modeling for assessing hip fracture risk. Int J Numer Method Biomed Eng. 29(5):615–629.
  • Luo Y, Sarvi MN, Sun P, Leslie WD, Ouyang J. 2014. Prediction of impact force in sideways fall by image-based subject-specific dynamics model. Int Biomech [Internet]. 1(1):1–14. http://dx.doi.org/10.1080/23310472.2014.975745.
  • Mirzaei M, Alavi F, Allaveisi F, Naeini V, Amiri P. 2018. Linear and nonlinear analyses of femoral fractures: computational/experimental study. J Biomech. 79:155–163.
  • Mirzaei M, Keshavarzian M, Naeini V. 2014. Analysis of strength and failure pattern of human proximal femur using quantitative computed tomography (QCT)-based finite element method. Bone [Internet]. 64:108–114. http://dx.doi.org/10.1016/j.bone.2014.04.007.
  • Morgan EF, Bayraktar HH, Keaveny TM. 2003. Trabecular bone modulus-density relationships depend on anatomic site. J Biomech [Internet]. 36(7):897–904. http://www.ncbi.nlm.nih.gov/pubmed/12757797.
  • Museyko O, Gerner B, Engelke K. 2017. A new method to determine cortical bone thickness in CT images using a hybrid approach of parametric profile representation and local adaptive thresholds: accuracy results. PLoS One. 12(11):e0187097.
  • Nalla RK, Kinney JH, Ritchie RO. 2003. Mechanistic fracture criteria for the failure of human cortical bone. Nat Mater. 2(3):164–168.
  • Nawathe S, Akhlaghpour H, Bouxsein ML, Keaveny TM. 2014. Microstructural failure mechanisms in the human proximal femur for sideways fall loading. J Bone Miner Res. 29(2):507–515.
  • Nawathe S, Nguyen BP, Barzanian N, Akhlaghpour H, Bouxsein ML, Keaveny TM. 2015. Cortical and trabecular load sharing in the human femoral neck. J Biomech. 48(5):816–822. http://dx.doi.org/10.1016/j.jbiomech.2014.12.022.
  • Naylor KE, McCloskey EV, Eastell R, Yang L. 2013. Use of DXA-based finite element analysis of the proximal femur in a longitudinal study of hip fracture. J Bone Miner Res. 28(5):1014–1021.
  • Nazarian A, Entezari V, Villa-Camacho JC, Zurakowski D, Katz JN, Hochman M, Baldini EH, Vartanians V, Rosen MP, Gebhardt MC, et al. 2016. Does CT-based rigidity analysis influence clinical decision-making in simulations of metastatic bone disease? Clin Orthop Relat Res. 474(3):652–659.
  • Nguyen TV. 2018. Individualized fracture risk assessment: state-of-the-art and room for improvement. Osteoporos Sarcopenia. 4(1):2–10.
  • Nishiyama KK, Gilchrist S, Guy P, Cripton P, Boyd SK. 2013. Proximal femur bone strength estimated by a computationally fast finite element analysis in a sideways fall configuration. J Biomech [Internet]. 46(7):1231–1236. http://dx.doi.org/10.1016/j.jbiomech.2013.02.025.
  • Nishiyama KK, Ito M, Harada A, Boyd SK. 2014. Classification of women with and without hip fracture based on quantitative computed tomography and finite element analysis. Osteoporos Int. 25(2):619–626.
  • Nishiyama KK, Shane E. 2013. Clinical imaging of bone microarchitecture with HR-pQCT. Curr Osteoporos Rep. 11(2):147–155.
  • Oftadeh R, Karimi Z, Villa-Camacho J, Tanck E, Verdonschot N, Goebel R, Snyder BD, Hashemi HN, Vaziri A, Nazarian A. 2016. Curved beam computed tomography based structural rigidity analysis of bones with simulated lytic defect: a comparative study with finite element analysis. Sci Rep. 6:32397–32312. http://dx.doi.org/10.1038/srep32397.
  • Öhman C, Baleani M, Pani C, Taddei F, Alberghini M, Viceconti M, Manfrini M. 2011. Compressive behaviour of child and adult cortical bone. Bone [Internet]. 49(4):769–776. http://dx.doi.org/10.1016/j.bone.2011.06.035.
  • Op Den Buijs J, Dragomir-Daescu D. 2011. Validated finite element models of the proximal femur using two-dimensional projected geometry and bone density. Comput Methods Programs Biomed. 104(2):168–174.
  • Orwoll ES, Marshall LM, Nielson CM, Cummings SR, Lapidus J, Cauley JA, Ensrud K, Lane N, Hoffmann PR, Kopperdahl DL, et al. 2009. Finite element analysis of the proximal femur and hip fracture risk in older men. J Bone Miner Res. 24(3):475–483.
  • Ota T, Yamamoto I, Morita R. 1999. Fracture simulation of the femoral bone using the finite-element method: how a fracture initiates and proceeds. J Bone Miner Metab. 17(2):108–112.
  • Pakdel A, Fialkov J, Whyne CM. 2016. High resolution bone material property assignment yields robust subject specific finite element models of complex thin bone structures. J Biomech. 49(9):1454–1460. http://dx.doi.org/10.1016/j.jbiomech.2016.03.015.
  • Pakdel A, Robert N, Fialkov J, Maloul A, Whyne C. 2012. Generalized method for computation of true thickness and X-ray intensity information in highly blurred sub-millimeter bone features in clinical CT images. Phys Med Biol. 57(23):8099–8116.
  • Panyasantisuk J, Dall'Ara E, Pretterklieber M, Pahr DH, Zysset PK. 2018. Mapping anisotropy improves QCT-based finite element estimation of hip strength in pooled stance and side-fall load configurations. Med Eng Phys [Internet]. 59:36–42.
  • Pauchard Y, Fitze T, Browarnik D, Eskandari A, Pauchard I, Enns-Bray W, Pálsson H, Sigurdsson S, Ferguson SJ, Harris TB, et al. 2016. Interactive graph-cut segmentation for fast creation of finite element models from clinical CT data for hip fracture prediction. Comput Methods Biomech Biomed Eng. 19(16):1693–1703. http://dx.doi.org/10.1080/10255842.2016.1181173.
  • Peleg E, Herblum R, Beek M, Joskowicz L, Liebergall M, Mosheiff R, Whyne C. 2014. Can a partial volume edge effect reduction algorithm improve the repeatability of subject-specific finite element models of femurs obtained from CT data?. Comput Methods Biomech Biomed Eng. 17(3):204–209. http://dx.doi.org/10.1080/10255842.2012.673595.
  • Perillo-Marcone A, Ryd L, Johnsson K, Taylor M. 2004. A combined RSA and FE study of the implanted proximal tibia: correlation of the post-operative mechanical environment with implant migration. J Biomech. 37(8):1205–1213.
  • Pinilla TP, Boardman KC, Bouxsein ML, Myers ER, Hayes WC. 1996. Impact direction from a fall influences the failure load of the proximal femur as much as age-related bone loss. Calcif Tissue Int. 58(4):231–235.
  • Pithioux M, Chabrand P, Hochard C, Champsaur P. 2011. Improved femoral neck fracture predictions using anisotropic failure criteria models. J Mech Med Biol. 11(05):1333–1346.
  • Pitocchi J, Paletti S, Cominoli B, Taddei F, Schileo E. 2017. Does cortical bone mapping improve FE strain prediction accuracy at the proximal femur? In: Vairo G, editor. VII Meeting Italian Chapter of the European Society of Biomechanics (ESB-ITA 2017); September 28–29; Rome. p. 91–92.
  • Poelert S, Valstar E, Weinans H, Zadpoor AA. 2013. Patient-specific finite element modeling of bones. Proc Inst Mech Eng H. 227(4):464–478.
  • Polgar K, Viceconti M, O'Connor JJ. 2001. A comparison between automatically generated linear and parabolic tetrahedra when used to mesh a human femur. Proc Inst Mech Eng H. 215(1):85–94.
  • Pottecher P, Engelke K, Duchemin L, Museyko O, Moser T, Mitton D, Vicaut E, Adams J, Skalli W, Laredo JD, et al. 2016. Prediction of hip failure load: in vitro study of 80 femurs using three imaging methods and finite element models-the European Fracture Study (EFFECT). Radiology. 280(3):837–847.
  • Qasim M, Farinella G, Zhang J, Li X, Yang L, Eastell R, Viceconti M. 2016. Patient-specific finite element estimated femur strength as a predictor of the risk of hip fracture: the effect of methodological determinants. Osteoporos Int. 27(9):2815–2822.
  • Ramos A, Simões JA. 2006. Tetrahedral versus hexahedral finite elements in numerical modelling of the proximal femur. Med Eng Phys. 28(9):916–924.
  • Rathnayaka K, Sahama T, Schuetz MA, Schmutz B. 2011. Effects of CT image segmentation methods on the accuracy of long bone 3D reconstructions. Med Eng Phys. 33(2):226–233. http://dx.doi.org/10.1016/j.medengphy.2010.10.002.
  • Rho JY, Hobatho MC, Ashman RB. 1995. Relations of mechanical properties to density and CT numbers in human bone. Med Eng Phys. 17(5):347–355.
  • Rittweger J, Michaelis I, Giehl M, Wüsecke P, Felsenberg D, Absorptiometry B, Density B. 2004. Adjusting for the partial volume effect in cortical bone analyses of pQCT images. J Musculoskelet Neuronal Interact. 4(4):436–441.
  • Roberts BJ, Kopperdahl D, Thrall E, Muller JA, Keaveny TM, Bouxsein ML. 2009. Prediction of femoral strength in a sideways fall configuration using QCT-based finite element analysis. Bone [Internet]. 44:S72. http://dx.doi.org/10.1016/j.bone.2009.01.158.
  • Rossman T, Kushvaha V, Dragomir-Daescu D. 2016. QCT/FEA predictions of femoral stiffness are strongly affected by boundary condition modeling. Comput Methods Biomech Biomed Eng. 19(2):208–216. http://dx.doi.org/10.1080/10255842.2015.1006209.
  • Ruiz Wills C, Olivares AL, Tassani S, Ceresa M, Zimmer V, González Ballester MA, del Río LM, Humbert L, Noailly J. 2019. 3D patient-specific finite element models of the proximal femur based on DXA towards the classification of fracture and non-fracture cases. Bone [Internet]. 121:89–99.
  • Sabet FA, JO, Koric S, Jasiuk I. 2018. Nonlinear micro-CT based FE modeling of trabecular bone—Sensitivity of apparent response to tissue constitutive law and bone volume fraction. Int J Numer Method Biomed Eng. 34:1–16.
  • Sarkalkan N, Weinans H, Zadpoor AA. 2014. Statistical shape and appearance models of bones. Bone [Internet]. 60:129–140. http://dx.doi.org/10.1016/j.bone.2013.12.006.
  • Sas A, Tanck E, Sermon A, Lenthe GH. Van 2020. Finite element models for fracture prevention in patients with metastatic bone disease. A literature review. Bone Rep. 12:100286.
  • Schileo E, Balistreri L, Grassi L, Cristofolini L, Taddei F. 2014. To what extent can linear finite element models of human femora predict failure under stance and fall loading configurations?. J Biomech. 47(14):3531–3538. http://www.ncbi.nlm.nih.gov/pubmed/25261321.
  • Schileo E, Dall’Ara E, Taddei F, Malandrino A, Schotkamp T, Baleani M, Viceconti M. 2008. An accurate estimation of bone density improves the accuracy of subject-specific finite element models. J Biomech. 41(11):2483–2491.
  • Schileo E, Pitocchi J, Falcinelli C, Taddei F. 2020. Cortical bone mapping improves finite element strain prediction accuracy at the proximal femur. Bone [Internet]. 136:115348.
  • Schileo E, Taddei F, Cristofolini L, Viceconti M. 2008. Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro. J Biomech. 41(2):356–367.
  • Schileo E, Taddei F, Malandrino A, Cristofolini L, Viceconti M. 2007. Subject-specific finite element models can accurately predict strain levels in long bones. J Biomech. 40(13):2982–2989.
  • Shen R, Waisman H, Yosibash Z, Dahan G. 2019. A novel phase field method for modeling the fracture of long bones. Int J Numer Methods Biomed Eng. 35:e3211.
  • Soodmand E, Kluess D, Varady PA, Cichon R, Schwarze M, Gehweiler D, Niemeyer F, Pahr D, Woiczinski M. 2018. Interlaboratory comparison of femur surface reconstruction from CT data compared to reference optical 3D scan. Biomed Eng Online. 17(1):29–10.
  • Spears IR, Pfleiderer M, Schneider E, Hille E, Morlock MM. 2001. The effect of interfacial parameters on cup-bone relative micromotions A finite element investigation. J Biomech. 34(1):113–120.
  • Speirs AD, Heller MO, Duda GN, Taylor WR. 2007. Physiologically based boundary conditions in finite element modelling. J Biomech. 40(10):2318–2323.
  • Sternheim A, Dadia S, Gortzak Y, Traub F, Trabelsi N, Snir N, Gorfine M, Yosibash Z. 2020. When and where do patients with bone metastases actually break their femurs? A CT-based finite element analysis. Bone Jt J. 102-B(5):638–645.
  • Sternheim A, Giladi O, Gortzak Y, Drexler M, Salai M, Trabelsi N, Milgrom C, Yosibash Z. 2018. Pathological fracture risk assessment in patients with femoral metastases using CT-based finite element methods. A retrospective clinical study. Bone [Internet]. 110:215–220.
  • Szwedowski TD, Fialkov J, Whyne CM. 2011. Sensitivity analysis of a validated subject-specific finite element model of the human craniofacial skeleton. Proc Inst Mech Eng H. 225(1):58–67.
  • Tabor Z, Petryniak R, Latała Z, Konopka T. 2013. The potential of multi-slice computed tomography based quantification of the structural anisotropy of vertebral trabecular bone. Med Eng Phys. 35(1):7–15. http://dx.doi.org/10.1016/j.medengphy.2012.03.003.
  • Taddei F, Cristofolini L, Martelli S, Gill HS, Viceconti M. 2006. Subject-specific finite element models of long bones: an in vitro evaluation of the overall accuracy. J Biomech. 39(13):2457–2467.
  • Taddei F, Martelli S, Reggiani B, Cristofolini L, Viceconti M. 2006. Finite-element modeling of bones from CT data: sensitivity to geometry and material uncertainties. IEEE Trans Biomed Eng. 53(11):2194–2200.
  • Taddei F, Schileo E, Helgason B, Cristofolini L, Viceconti M. 2007. The material mapping strategy influences the accuracy of CT-based finite element models of bones: an evaluation against experimental measurements. Med Eng Phys. 29(9):973–979.
  • Taylor D. 2003. Fracture mechanics: how does bone break? Nat Mater. 2(3):133–134.
  • Testi D, Zannoni C, Cappello A, Viceconti M. 2001. Border-tracing algorithm implementation for the femoral geometry reconstruction. Comput Methods Programs Biomed. 65(3):175–182.
  • Thorne K, Johansen A, Akbari A, Williams JG, Roberts SE. 2016. The impact of social deprivation on mortality following hip fracture in England and Wales: a record linkage study. Osteoporos Int. 27(9):2727–2737. http://dx.doi.org/10.1007/s00198-016-3608-5.
  • Trabelsi N, Yosibash Z, Milgrom C. 2009. Validation of subject-specific automated p-FE analysis of the proximal femur. J Biomech. 42(3):234–241.
  • Trabelsi N, Yosibash Z, Wutte C, Augat P, Eberle S. 2011. Patient-specific finite element analysis of the human femur-A double-blinded biomechanical validation. J Biomech. 44(9):1666–1672. http://dx.doi.org/10.1016/j.jbiomech.2011.03.024.
  • Trabelsi N, Yosibash Z. 2011. Patient-specific finite-element analyses of the proximal femur with orthotropic material properties validated by experiments. J Biomech Eng. 133:1–11.
  • Treece GM, Gee AH. 2015. Independent measurement of femoral cortical thickness and cortical bone density using clinical CT. Med Image Anal. 20(1):249–264. http://dx.doi.org/10.1016/j.media.2014.11.012.
  • Väänänen SP, Grassi L, Flivik G, Jurvelin JS, Isaksson H. 2015. Generation of 3D shape, density, cortical thickness and finite element mesh of proximal femur from a DXA image. Med Image Anal. 24(1):125–134.
  • Väänänen SP, Grassi L, Venäläinen MS, Matikka H, Zheng Y, Jurvelin JS, Isaksson H. 2019. Automated segmentation of cortical and trabecular bone to generate finite element models for femoral bone mechanics. Med Eng Phys. 70:19–28.
  • Van Rietbergen B, Huiskes R, Eckstein F, Rüegsegger P. 2003. Trabecular bone tissue strains in the healthy and osteoporotic human femur. J Bone Miner Res. 18(10):1781–1788.
  • van Rietbergen B, Majumdar S, Pistoia W, Newitt DC, Kothari M, Laib A, Rüegsegger P. 1998. Assessment of cancellous bone mechanical properties from micro-FE models based on micro-CT, pQCT and MR images. THC. 6(5-6):413–420. http://www.ncbi.nlm.nih.gov/pubmed/10100943.
  • Varga P, Schwiedrzik J, Zysset PK, Fliri-Hofmann L, Widmer D, Gueorguiev B, Blauth M, Windolf M. 2016. Nonlinear quasi-static finite element simulations predict in vitro strength of human proximal femora assessed in a dynamic sideways fall setup. J Mech Behav Biomed Mater. 57:116–127. http://dx.doi.org/10.1016/j.jmbbm.2015.11.026.
  • Verhulp E, van Rietbergen B, Huiskes R. 2006. Comparison of micro-level and continuum-level voxel models of the proximal femur. J Biomech. 39(16):2951–2957.
  • Verhulp E, van Rietbergen B, Huiskes R. 2008. Load distribution in the healthy and osteoporotic human proximal femur during a fall to the side. Bone. 42(1):30–35.
  • Viceconti M, Olsen S, Nolte LP, Burton K. 2005. Extracting clinically relevant data from finite element simulations. Clin Biomech (Bristol, Avon)). 20(5):451–454.
  • Viceconti M. 2019. Predicting bone strength from CT data: clinical applications. Morphologie. 103(343):180–186.
  • Wang X, Sanyal A, Cawthon PM, Palermo L, Jekir M, Christensen J, Ensrud KE, Cummings SR, Orwoll E, Black DM, et al. 2012. Prediction of new clinical vertebral fractures in elderly men using finite element analysis of CT scans. J Bone Miner Res. 27(4):808–816.
  • Wirtz DC, Pandorf T, Portheine F, Radermacher K, Schiffers N, Prescher A, Weichert D, Niethard FU. 2003. Concept and development of an orthotropic FE model of the proximal femur. J Biomech. 36(2):289–293.
  • Wolfram U, Schmitz B, Heuer F, Reinehr M, Wilke HJ. 2009. Vertebral trabecular main direction can be determined from clinical CT datasets using the gradient structure tensor and not the inertia tensor-A case study. J Biomech. 42(10):1390–1396.
  • Wu C, Fang J, Zhang Z, Entezari A, Sun G, Swain MV, Li Q. 2020. Fracture modeling of brittle biomaterials by the phase-field method. Eng Fract Mech [Internet]. 224:106752.
  • Yang L, Palermo L, Black DM, Eastell R. 2014. Prediction of incident hip fracture with the estimated femoral strength by finite element analysis of DXA scans in the study of osteoporotic fractures. J Bone Miner Res. 29(12):2594–2600.
  • Yosibash Z, Myers K, Trabelsi N, Sternheim A. 2020. Autonomous FEs (AFE) - A stride toward personalized medicine. Comput Math Appl.
  • Yosibash Z, Plitman Mayo R, Dahan G, Trabelsi N, Amir G, Milgrom C. 2014. Predicting the stiffness and strength of human femurs with real metastatic tumors. Bone [Internet]. 69:180–190. http://dx.doi.org/10.1016/j.bone.2014.09.022.
  • Yosibash Z, Tal D, Trabelsi N. 2010. Predicting the yield of the proximal femur using high-order finite-element analysis with inhomogeneous orthotropic material properties. Philos Trans A Math Phys Eng Sci. 368(1920):2707–2723.
  • Yosibash Z, Trabelsi N, Milgrom C. 2007. Reliable simulations of the human proximal femur by high-order finite element analysis validated by experimental observations. J Biomech. 40(16):3688–3699.
  • Young PG, Beresford-West TBH, Coward SRL, Notarberardino B, Walker B, Abdul-Aziz A. 2008. An efficient approach to converting three-dimensional image data into highly accurate computational models. Philos Trans A Math Phys Eng Sci. 366(1878):3155–3173.
  • Zani L, Cristofolini L, Juszczyk MM, Grassi L, Viceconti M. 2014. A new paradigm for the in vitro simulation of sideways fall loading of the proximal human femur. J Mech Med Biol. 14:1–20.
  • Zoroofi RA, Sato Y, Sasama T, Nishii T, Sugano N, Yonenobu K, Yoshikawa H, Ochi T, Tamura S. 2003. Automated segmentation of acetabulum and femoral head from 3-D CT images. IEEE Trans Inf Technol Biomed. 7(4):329–343.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.