185
Views
3
CrossRef citations to date
0
Altmetric
Articles

A global sensitivity analysis approach applied to a multiscale model of microvascular flow

ORCID Icon, ORCID Icon, , , &
Pages 1215-1224 | Received 23 Dec 2019, Accepted 06 Jul 2020, Published online: 20 Jul 2020

References

  • Amann K, Wiest G, Zimmer G, Gretz N, Ritz E, Mall G. 1992. Reduced capillary density in the myocardium of uremic rats–a stereological study. Kidney Int. 42(5):1079–1085.
  • Balogh P, Bagchi P. 2017. A computational approach to modeling cellular-scale blood flow in complex geometry. Comput Phys. 334:280–307.
  • Baxter LT, Jain RK. 1990. Transport of fluid and macromolecules in tumors. II. Role of heterogeneous perfusion and lymphatics. Microvasc Res. 40(2):246–263.
  • Campolongo F, Cariboni J, Saltelli A. 2007. An effective screening design for sensitivity analysis of large models. Environ Modell Software. 22(10):1509–1518.
  • Campolongo F, Saltelli A, Cariboni J. 2011. From screening to quantitative sensitivity analysis. A unified approach. Comput Phys Commun. 182(4):978–988.
  • Casagrande G, Bianchi C, Vito D, Carfagna F, Minoretti C, Pontoriero G, Rombolà G, Schoenholzer C, Costantino ML. 2016. Patient-specific modeling of multicompartmental fluid and mass exchange during dialysis. Int J Artif Organs. 39(5):220–227.
  • Cattaneo L, Zunino P 2014b. Computational models for fluid exchange between microcirculation and tissue interstitium. Networks Heterogen Media. 9(1):135–159.
  • Cattaneo L, Zunino P. 2014a. A computational model of drug delivery through microcirculation to compare different tumor treatments. Int J Numer Method Biomed Eng. 30(11):1347–1371.
  • Causin P, Guidoboni G, Malgaroli F, Sacco R, Harris A. 2016. Blood flow mechanics and oxygen transport and delivery in the retinal microcirculation: multiscale mathematical modeling and numerical simulation. Biomech Model Mechanobiol. 15(3):525–542.
  • Cicchetti A, Laurino F, Possenti L, Rancati T, Zunino P. 2020. In silico model of the early effects of radiation therapy on the microcirculation and the surrounding tissues. Phys Med. 73:125–134.
  • D’Angelo C, Quarteroni A. 2008. On the coupling of 1d and 3d diffusion-reaction equations: Application to tissue perfusion problems. Math Models Methods Appl Sci. 18(8):1481–1504.
  • Fedosov DA, Caswell B, Popel AS, Karniadakis G. 2010. Blood flow and cell-free layer in microvessels. Microcirculation. 17(8):615–628.
  • Gabriel E, Fisher D, Evans S, Takabe K, Skitzki J. 2018. Intravital microscopy in the study of the tumor microenvironment: from bench to human application. Oncotarget. 9(28):20165–20178.
  • GetFem++. v.5.2. Available from: http://getfem.org/.
  • Haase K, Kamm RD. 2017. Advances in on-chip vascularization. Regen Med. 12(3):285–302.
  • Hall J. 2015. Guyton and hall textbook of medical physiology. 13th ed. Philadelphia, PA: Elsevier.
  • Harper SJ, Tomson CR, Bates DO. 2002. Human uremic plasma increases microvascular permeability to water and proteins in vivo. Kidney Int. 61(4):1416–1422.
  • Interreg. 2007–2013. Database from INTERREG IT-CH 2007-2013: DialysIS (Dialysis therapy between Italy and Switzerland) Project - Grant ID 33570710.; [www.dialysis-project.eu].
  • Lee JJ, Piersanti E, Mardal KA, Rognes ME. 2019. A mixed finite element method for nearly incompressible multiple-network poroelasticity. SIAM J Sci Comput. 41(2):A722–27.
  • Levick JR. 1991. Capillary filtration-absorption balance reconsidered in light of dynamic extravascular factors. Exp Physiol. 76(6):825–857.
  • MATLAB. 2018. The MathWorks. Natick, MA.
  • Morris MD. 1991. Factorial plans for preliminary computational experiments. Technometrics. 33(2):161–174.
  • Nabil M, Zunino P. 2016. A computational study of cancer hyperthermia based on vascular magnetic nanoconstructs. R Soc Open Sci. 3(9):160287
  • Obrist D, Weber B, Buck A, Jenny P. 2010. Red blood cell distribution in simplified capillary networks. Proc R Soc A. 368(1921):2897–2918.
  • Offeddu GS, Possenti L, Loessberg‐Zahl JT, Zunino P, Roberts J, Han X, Hickman D, Knutson CG, Kamm RD. 2019. Application of transmural flow across in vitro microvasculature enables direct sampling of interstitial therapeutic molecule distribution. Small. 15(46):1902393.
  • Paraview. v5.0. Available from: https://www.paraview.org/.
  • Pinto S, Romano E, António C, Sousa L, Castro C. 2020. The impact of non-linear viscoelastic property of blood in right coronary arteries hemodynamics — a numerical implementation. Int J Non Linear Mech. 123:103477.
  • Possenti L, Casagrande G, Gregorio SD, Zunino P, Costantino ML. 2019a. Numerical simulations of the microvascular fluid balance with a non-linear model of the lymphatic system. Microvasc Res. 122:101–110.
  • Possenti L, di Gregorio S, Gerosa FM, Raimondi G, Casagrande G, Costantino ML, Zunino P. 2019b. A computational model for microcirculation including fahraeus-lindqvist effect, plasma skimming and fluid exchange with the tissue interstitium. Int J Numer Method Biomed Eng. 35(3):e3165.
  • Possenti L. 2018. Modeling of microvasculature in uremic patients [dissertation]. Milan: Politecnico di Milano.
  • Pozrikidis C, Farrow DA. 2003. A model of fluid flow in solid tumors. Ann Biomed Eng. 31(2):181–194.
  • Pries AR, Secomb TW, Gessner T, Sperandio MB, Gross JF, Gaehtgens P. 1994. Resistance to blood flow in microvessels in vivo. Circ Res. 75(5):904–915.
  • Rasmussen PM, Secomb TW, Pries AR. 2018. Modeling the hematocrit distribution in microcirculatory networks: a quantitative evaluation of a phase separation model. Microcirculation. 25(3):e12445.
  • Robertson A, Sequeira A, Owens R. 2009. Rheological models for blood. Model Simul Appl. 1:211–241.
  • Saltelli A, Campolongo F, Cariboni J. 2009. Screening important inputs in models with strong interaction properties. Reliab Eng Syst Saf. 94(7):1149–1155.
  • Sefidgar M, Soltani M, Raahemifar K, Bazmara H. 2015. Effect of fluid friction on interstitial fluid flow coupled with blood flow through solid tumor microvascular network effect of fluid friction on interstitial fluid flow coupled with blood flow through solid tumor microvascular network. Comput Math Methods Med. 2015:1–8.
  • Sefidgar M, Soltani M, Raahemifar K, Sadeghi M, Bazmara H, Bazargan M, Mousavi Naeenian M. 2015. Numerical modeling of drug delivery in a dynamic solid tumor microvasculature. Microvasc Res. 99:43–56.
  • Siggers JH, Leungchavaphongse K, Ho CH, Repetto R. 2014. Mathematical model of blood and interstitial flow and lymph production in the liver. Biomech Model Mechanobiol. 13(2):363–378.
  • Silverthorn 2010. Human Physiology.
  • Sun C, Jain RK, Munn LL. 2007. Non-uniform plasma leakage affects local hematocrit and blood flow: implications for inflammation and tumor perfusion. Ann Biomed Eng. 35(12):2121–2129.
  • Swartz MA, Fleury ME. 2007. Interstitial flow and its effects in soft tissues. Annu Rev Biomed Eng. 9(1):229–256.
  • Vanholder R, Gryp T, Glorieux G. 2018. Urea and chronic kidney disease: the comeback of the century? (in uraemia research). Nephrol Dial Transplant. 33(1):4–12.
  • Vito D, Casagrande G, Bianchi C, Costantino ML. 2015. How to extract clinically useful information from large amount of dialysis related stored data. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS; 2015–November; p. 6812–6815.
  • Yeh YC, Chao A, Lee CY, Lee CT, Yeh CC, Liu CM, Tsai MK. 2017. An observational study of microcirculation in dialysis patients and kidney transplant recipients. Eur J Clin Invest. 47(9):630–638.
  • Zhao N, Iramina K. 2015. Numerical simulation of effect of convection-diffusion on oxygen transport in microcirculation. Appl Math Mech-Engl Ed. 36(2):179–200.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.