396
Views
5
CrossRef citations to date
0
Altmetric
Articles

Using intravascular ultrasound image-based fluid-structure interaction models and machine learning methods to predict human coronary plaque vulnerability change

, , , , , , , , , , & show all
Pages 1267-1276 | Received 18 Apr 2019, Accepted 12 Jul 2020, Published online: 22 Jul 2020

References

  • Athanasiou LS, Bourantas CV, Rigas G, Sakellarios AI, Exarchos TP, Siogkas PK, Ricciardi A, Naka KK, Papafaklis MI, Michalis LK, et al. 2014. Methodology for fully automated segmentation and plaque characterization in intracoronary optical coherence tomography images. J Biomed Opt. 19(2):026009.
  • Bathe KJ. 2002. Theory and modeling guide. Watertown: ADINA R&D.
  • Bluestein D, Alemu Y, Avrahami I, Gharib M, Dumont K, Ricotta JJ, Einav S. 2008. Influence of microcalcifications on vulnerable plaque mechanics using FSI modeling. J Biomech. 41(5):1111–1118.
  • Bodnár T, Sequeira A, Prosi M. 2011. On the shear-thinning and viscoelastic effects of blood flow under various flow rates. Appl Math Comput. 217(11):5055–5067.
  • Corban MT, Eshtehardi P, Suo J, McDaniel MC, Timmins LH, Rassoul-Arzrumly E, Maynard C, Mekonnen G, King S, 3rd, Quyyumi AA, et al. 2014. Cobination of plaque burden, wall shear stress, and plaque phenotype has incremental value for prediction of coronary atherosclerotic plaque progression and vulnerability. Atherosclerosis. 232(2):271–276.
  • Gałecki A, Burzykowski T. 2013. Linear mixed-effects models using R: a step-by-step approach. New York (NY): Springer.
  • Guo X, Giddens DP, Molony DS, Yang C, Samady H, Zheng J, Mintz GS, Maehara A, Wang L, Pei X, et al. 2018. Combining IVUS and optical coherence tomography for more accurate coronary cap thickness quantification and stress/strain calculations: a patient-specific three-dimensional fluid-structure interaction modeling approach. J Biomech Eng. 140(4):041005.
  • Guo X, Zhu J, Maehara A, Monoly DS, Samady H, Wang L, Billiar KL, Zheng J, Yang C, Mintz GS, et al. 2017. Quantify patient-specific coronary material property and its impact on stress/strain calculations using in vivo IVUS data and 3D FSI models: a pilot study. Biomech Model Mechanobiol. 16(1):333–344.
  • Holzapfel GA, Gasser TC, Ogden RW. 2000. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast. 61(1/3):1–48.
  • Kural MH, Cai M, Tang D, Gwyther T, Zheng J, Billiar KL. 2012. Planar biaxial characterization of diseased human coronary and carotid arteries for computational modeling. J Biomech. 45(5):790–798.
  • Lee JM, Choi G, Koo B, Hwang D, Park J, Zhang J, Kim KJ, Tong Y, Kim HJ, Grady L, et al. 2019. Identification of high-risk plaques destined to cause acute coronary syndrome using coronary computed tomographic angiography and computational fluid dynamics. JACC Cardiovasc Imaging. 12(6):1032–1043.
  • Naghavi MP, Libby E, Falk SW, Casscells S, Litovsky J, Rumberger J, Badimon JJ, Stefanadis C, Moreno P, Pasterkamp G, et al. 2003. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation. 108(14):1664–1672.
  • Ohayon J, Dubreuil O, Tracqui P, Le Floc’h S, Rioufol G, Chalabreysse L, Thivolet F, Pettigrew RI, Finet G. 2007. Influence of residual stress/strain on the biomechanical stability of vulnerable coronary plaques: potential impact for evaluating the risk of plaque rupture. Am J Physiol Heart Circ Physiol. 293(3):H1987–H1996.
  • Pinto SIS, Romano E, António CC, Sousa LC, Castro CF. 2020. The impact of non-linear viscoelastic property of blood in right coronary arteries hemodynamics – a numerical implementation. Int J Non Linear Mech. 123:103477.
  • Samady H, Eshtehardi P, McDaniel MC, Suo J, Dhawan SS, Maynard C, Timmins LH, Quyyumi AA, Giddens DP. 2011. Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. Circulation. 124(7):779–788.
  • Stary HC, Chandler AB, Glagov S, Guyton JR, Insull W, Jr, Rosenfeld ME, Schaffer SA, Schwartz CJ, Wagner WD, Wissler RW. 1994. A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arterioscler Thromb. 14(5):840–856.
  • Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull W, Jr, Rosenfeld ME, Schwartz CJ, Wagner WD, Wissler RW. 1995. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation. 92(5):1355–1374.
  • Stone GW, Maehara A, Lansky AJ, de Bruyne B, Cristea E, Mintz GS, Mehran R, McPherson J, Farhat N, Marso SP, et al. 2011. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 364(3):226–235.
  • Stone PH, Saito S, Takahashi S, Makita Y, Nakamura S, Kawasaki T, Takahashi A, Katsuki T, Nakamura S, Namiki A, et al. 2012. Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics: the PREDICTION Study. Circulation. 126(2):172–181.
  • Tang D, Kamm RD, Yang C, Zheng J, Canton G, Bach R, Huang X, Hatsukami TS, Zhu J, Ma G, et al. 2014. Image-based modeling for better understanding and assessment of atherosclerotic plaque progression and vulnerability: data, modeling, validation, uncertainty and predictions. J Biomech. 47(4):834–846.
  • Tang D, Yang C, Kobayashi S, Ku DN. 2001. Steady flow and wall compression in stenotic arteries: a three-dimensional thick-wall model with fluid-wall interactions. J Biomech Eng. 123(6):548–557.
  • Tang D, Yang C, Kobayashi S, Ku DN. 2004. Effect of a lipid pool on stress/strain distributions in stenotic arteries: 3D FSI models. J Biomech Eng. 126(3):363–370.
  • Tang D, Yang C, Ku DN. 1999. A 3-D thin-wall model with flow-structure interactions for blood flow in carotid arteries with symmetric and asymmetric stenoses. Comput Struct. 72(1–3):357–377.
  • Tang D, Yang C, Zheng J, Woodard PK, Saffitz JE, Sicard GA, Pilgram TK, Yuan C. 2005. Quantifying effects of plaque structure and material properties on stress behaviors in human atherosclerotic plaques using 3D FSI models. J Biomech Eng. 127(7):1185–1194.
  • Teng Z, Brown AJ, Calvert PA, Parker RA, Obaid DR, Huang Y, Hoole SP, West NE, Gillard JH, Bennett MR. 2014. Coronary plaque structural stress is associated with plaque composition and subtype and higher in acute coronary syndrome: the BEACON I (Biomechanical Evaluation of Atheromatous Coronary Arteries) study. Circ Cardiovasc Imaging. 7(3):461–470.
  • Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. 2000. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 20(5):1262–1275.
  • Wahle A, Prause PM, DeJong SC, Sonka M. 1999. Geometrically correct 3-D reconstruction of intravascular ultrasound images by fusion with biplane angiography-methods and validation. IEEE Trans Med Imaging. 18(8):686–699.
  • Wang L, Tang D, Maehara A, Wu Z, Yang C, Muccigrosso D, Zheng J, Bach R, Billiar KL, Mintz GS. 2018. Fluid-structure interaction models based on patient-specific IVUS at baseline and follow-up for prediction of coronary plaque progression by morphological and biomechanical factors: a preliminary study. J Biomech. 68:43–50.
  • Wang L, Zheng J, Maehara A, Yang C, Billiar KL, Wu Z, Bach R, Muccigrosso D, Mintz GS, Tang D. 2015. Morphological and stress vulnerability indices for human coronary plaques and their correlations with cap thickness and lipid percent: an IVUS-based fluid-structure interaction multi-patient study. PLoS Comput Biol. 11(12):e1004652.
  • Wang X, Wang T, Bu J. 2011. Color image segmentation using pixel wise support vector machine classification. Pattern Recognit. 44(4):777–787.
  • Wu Z, Yang C, Tang D. 2011. In vivo serial MRI-based models and statistical methods to quantify sensitivity and specificity of mechanical predictors for carotid plaque rupture: location and beyond. J Biomech Eng. 133(6):064503.
  • Yang C, Bach R, Zheng J, El Naqa I, Woodard PK, Teng Z, Billiar KL, Tang D. 2009. In vivo IVUS-based 3D fluid structure interaction models with cyclic bending and anisotropic vessel properties for human atherosclerotic coronary plaque mechanical analysis. IEEE Trans Biomed Eng. 56(10):2420–2428.
  • Yang C, Tang D, Yuan C, Hatsukami TS, Zheng J, Woodard PK. 2007. In vivo/ex vivo MRI-based 3D non-Newtonian FSI models for human atherosclerotic plaques compared with fluid/wall-only models. Comput Model Eng Sci. 19(3):233–246.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.