494
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Investigation of airflow at different activity conditions in a realistic model of human upper respiratory tract

, ORCID Icon, & ORCID Icon
Pages 173-187 | Received 11 Jan 2020, Accepted 01 Sep 2020, Published online: 17 Sep 2020

References

  • Abouali O, Keshavarzian EE, Ghalati PF, Faramarzi A, Ahmadi G, Bagheri MH. 2012. Micro and nanoparticle deposition in human nasal passage pre and post virtual maxillary sinus endoscopic surgery. Respir Physiol Neurobiol. 181(3):335–345.
  • Aftab SMA, Mohd Rafie AS, Razak NA, Ahmad KA. 2016. Turbulence model selection for low Reynolds number flows. PLoS One. 11(4):e0153755.
  • Anderson B, Anderson R, Hakansson L, Mortensen M, Sudiyo R, Wachem VB. 2012. Computational fluid dynamics for engineers. Cambridge University Press. ISBN: 9781107018952.
  • Baker TJ. 2005. Mesh generation: art or science? Prog Aerosp Sci. 41(1):29–63.
  • Ball CG, Uddin M, Pollard A. 2008. Mean flow structures inside the human upper airway. Flow Turbulence Combust. 81(1–2):155–188.
  • Bass K, Longest PW. 2018. Recommendations for simulating microparticle deposition at conditions similar to the upper airways with two-equation turbulence models. J Aerosol Sci. 119:31–50.
  • Bates AJ, Cetto R, Doorly DJ, Schroter RC, Tolley NS, Comerford A. 2016. The effects of curvature and constriction on airflow and energy loss in pathological tracheas. Respir Physiol Neurobiol. 234:69–78.
  • Bates AJ, Doorly DJ, Cetto R, Calmet H, Gambaruto AM, Tolley NS, Houzeaux G, Schroter RC. 2016. Dynamics of air flow in a short inhalation. J R Soc Interface. 12(102):20140880.
  • Borojeni AA, Noga ML, Martin AR, Finlay WH. 2015. Validation of airway resistance models for predicting pressure loss through anatomically realistic conducting airway replicas of adults and children. J Biomech. 48(10):1988–1996.
  • Borojeni AAT, Noga ML, Vehring R, Finlay WH. 2014. Measurements of total aerosol deposition in intrathoracic conducting airway replicas of children. J Aerosol Sci. 73:39–47.
  • Calmet H, Gambaruto AM, Bates AJ, Vázquez M, Houzeaux G, Doorly DJ. 2016. Large-scale CFD simulations of the transitional and turbulent regime for the large human airways during rapid inhalation. Comput Biol Med. 69:166–180.
  • Comer JK, Kleinstreuer C, Zhang Z. 2001. Flow structures and particle deposition patterns in double bifurcation airway models. 1. Airflow fields. J Fluid Mech. 435:25–54.
  • Corcoran TE, Chigier N. 2000. Characterization of the laryngeal jet using phase doppler interferometry. J Aerosol Med. 13(2):125–137.
  • Dong J, Shang Y, Tian L, Inthavong K, Tu J. 2018. Detailed deposition analysis of inertial and diffusive particles in a rat nasal passage. Inhal Toxicol. 30(1):29–39.
  • Elad D, Naftali S, Rosenfeld M, Wolf M. 2006. Physical stresses at the air-wall interface of the human nasal cavity during breathing. J Appl Physiol. 100(3):1003–1010.
  • Forman M, Jıcha M, Katolicky J. 2007. Aerosol deposition in human airways during breathing cycle. Appl Comput Mech. 1:437–444.
  • Freitas CJ. 2002. The issue of numerical uncertainty. Appl Math Modell. 26(2):237–248.
  • Garcia GJM, Tewksbury EW, Wong BA, Kimbell JS. 2009. Interindividual variability in nasal filtration as a function of nasal cavity geometry. J Aerosol Med Pulm Drug Deliv. 22(2):139–155.
  • Ghahramani E, Abouali O, Emdad H, Ahmadi G. 2014. Numerical analysis of stochastic dispersion of micro-particles in turbulent flows in a realistic model of human nasal/upper airway. J Aerosol Sci. 67:188–206.
  • Haghnegahdar A, Zhao J, Feng Y. 2019a. Lung aerosol dynamics of airborne influenza A virus-laden droplets and the resultant immune system responses: an in silico study. J Aerosol Sci. 134:34–55.
  • Haghnegahdar A, Zhao J, Kozak M, Williamson P, Feng Y. 2019b. Development of a hybrid CFD-PBPK model to predict the transport of xenon gas around a human respiratory system to systemic regions. Heliyon. 5(4):e01461.
  • Hemmati Y, Rafee R. 2018. Effects of the shape and height of artificial 2D roughness elements on deposition of nano and microparticles in the turbulent gas flow inside a horizontal channel. J Aerosol Sci. 122:45–58.
  • Hörschler I, Schröder W, Meinke M. 2010. On the assumption of steadiness of nasal cavity flow. J Biomech. 43(6):1081–1085.
  • Huang J, Sun H, Liu C, Zhang L. 2013. Moving boundary simulation of airflow and micro-particle deposition in the human extra-thoracic airway under steady inspiration. Part I: airflow. Eur J Mech B/Fluids. 37:29–41.
  • Inthavong K, Choi L-T, Tu J, Ding S, Thien F. 2010. Micron particle deposition in a tracheobronchial airway model under different breathing conditions. Med Eng Phys. 32(10):1198–1212.
  • Inthavong K, Ge Q, Se CMK, Yang W, Tu JY. 2011. Simulation of sprayed particle deposition in a human nasal cavity including a nasal spray device. J Aerosol Sci. 42(2):100–113.
  • Ismail M, Comerford A, Wall WA. 2013. Coupled and reduced dimensional modeling of respiratory mechanics during spontaneous breathing. Int J Numer Method Biomed Eng. 29(11):1285–1305.
  • Jayaraju ST, Brouns M, Lacor C, Belkassem B, Verbanck S. 2008. Large eddy and detached eddy simulations of fluid flow and particle deposition in a human mouth–throat. J Aerosol Sci. 39(10):862–875.
  • Jolliet P, Ouanes-Besbes L, Abroug F B, Ben Khelil J, Besbes M, Garnero A, Arnal J M, Daviaud F, Chiche J D, Lortat-Jacob B, Diehl J L, Lerolle N, Mercat A, Razazi K, Brun-Buisson C, Durand-Zaleski I, Texereau J, and Brochard L. 2016 A Multicenter Randomized Trial Assessing the Efficacy of Helium/Oxygen in Severe Exacerbations of Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med. 195 (7): 871–880.
  • Kabilan S, Suffield SR, Recknagle KP, Jacob RE, Einstein DR, Kuprat AP, Carson JP, Colby SM, Saunders JH, Hines SA, et al. 2016. Computational fluid dynamics modeling of Bacillus anthracis spore deposition in rabbit and human respiratory airways. J Aerosol Sci. 99:64–77.
  • Katz IM, Martin AR, Muller PA, Terzibachi K, Feng CH, Caillibotte G, Sandeau J, Texereau J. 2011. The ventilation distribution of helium-oxygen mixtures and the role of inertial losses in the presence of heterogeneous airway obstructions. J Biomech. 44(6):1137–1143.
  • Kim JW, Phuong NL, Aramaki S, Ichiro IK. 2018. Flow visualization through particle image velocimetry in realistic model of rhesus monkey's upper airway. Respir Physiol Neurobiol. 251:16–27.
  • Kim K, McCracken K, Lee B, Shin C, Jo M, Lee C, Ko K. 1997. Airway goblet cell mucin: its structure and regulation of secretion. Eur Respir J. 10(11):2644–2649.
  • Kleinstreuer C, Zhang Z. 2003. Laminar-to-turbulent fluid-particle flows in a human airway model. Int J Multiphase Flow. 29(2):271–289.
  • Kori J, Pratibha. 2019. Simulation and modeling for aging and particle shape effect on airflow dynamics and filtration efficiency of human lung. JAFM. 12(4):1273–1285.
  • Koullapis P, Kassinos S, Bivolarova MP, Melikov AK. 2016. Particle deposition in a realistic geometry of the human conducting airways: effects of inlet velocity profile; inhalation flow rate and electrostatic charge. J Biomech. 49(11):2201–2212.
  • Lee JH, Na Y, Kim SK, Chung SK. 2010. Unsteady flow characteristics through a human nasal airway. Respir Physiol Neurobiol. 172(3):136–146.
  • Leung SSY, Tang P, Zhou QT, Tong ZB, Leung C, Decharaksa J, Yang RY, Chan HK. 2015. De-agglomeration effect of the US pharmacopeia and Alberta throats on carrier-based powders in commercial inhalation products. AAPS J. 17(6):1407–1416.
  • Lin CL, Tawhai MH, McLennan G, Hoffman EA. 2007. Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways. Respir Physiol Neurobiol. 157(2–3):295–309.
  • Liu Y, Matida EA, Johnson MR. 2010. Experimental measurements and computational modeling of aerosol deposition in the Carleton-Civic standardized human nasal cavity. J Aerosol Sci. 41(6):569–586.
  • Liu Z, Angui L, Xiaoxia X, Ran G. 2012. Computational fluid dynamics simulation of airflow Patterns and particle deposition characteristics in Children upper respiratory tracts. Eng Appl Comput Fluid Mech. 6(4):556–571.
  • Longest PW, Hindle M, Choudhuri SD, Xi JX. 2008. Comparison of ambient and spray aerosol deposition in a standard induction port and more realistic mouth-throat geometry. J Aerosol Sci. 39(7):572–591.
  • Longest PW, Vinchurkar S. 2007. Validating CFD predictions of respiratory aerosol deposition: effects of upstream transition and turbulence. J Biomech. 40(2):305–316.
  • Luo HY, Liu Y. 2008. Modeling the bifurcating flow in a CT-scanned human lung airway. J Biomech. 41(12):2681–2688.
  • Luo HY, Liu Y. 2009. Particle deposition in a CT-scanned human lung airway. J Biomech. 42(12):1869–1876.
  • Mina EM, Ghorbaniasl G, Lacor C. 2018. Study of nanoparticles deposition in a human upper airway model using a dynamic turbulent Schmidt number. Ain Shams Eng J. 9(4): 2389–2398.
  • Mirzaee H, Rafee R, Ahmadi G. 2019. Inertial impaction of particles on a circular cylinder for a wide range of Reynolds and P numbers: a comparative study. J Aerosol Sci. 135:86–102.
  • Naseri A, Shaghaghian S, Abouali O, Ahmadi G. 2017. Numerical investigation of transient transport and deposition of microparticles under unsteady inspiratory flow in human upper airways. Respir Physiol Neurobiol. 244:56–72.
  • Nikookar H, Abouali O, Eghtesad M, Sadrizadeh S, Ahmadi G. 2019. Enhancing drug delivery to human trachea through oral airway using magnetophoretic steering of microsphere carriers composed of aggregated superparamagnetic nanoparticles and nanomedicine: a numerical study. J Aerosol Sci. 127:63–92.
  • Paxman T, Noga M, Finlay WH, Martin AR. 2019. Experimental evaluation of pressure drop for flows of air and heliox through upper and central conducting airway replicas of 4- to 8-year-old children. J Biomech. 82:134–141.
  • Paz C, Suárez E, Concheiro M, Porteiro J. 2017. CFD Transient simulation of a breathing cycle in an oral-nasal extrathoracic model. JAFM. 10(3):777–784.
  • Pedley TJ, Schroter RC, Sudlow MF. 1970. Energy losses and pressure drop in models of human airways. Respir Physiol. 9(3):371–386.
  • Phuong N, Khoa N, Inthavong K, Ito K. 2018. Particle and inhalation exposure in human and monkey computational airway models. Inhalation Toxicol. 30(11–12):416–428.
  • Phuong NL, Quang TV, Khoa ND, Kim JW, Ito K. 2020. CFD analysis of the flow structure in a monkey upper airway validated by PIV experiments. Respir Physiol Neurobiol. 271:103304.
  • Pozin N, Montesantos S, Katz I, Pichelin M, Grandmont C, Vignon-Clementel I. 2017. Calculated ventilation and effort distribution as a measure of respiratory disease and Heliox effectiveness. J Biomech. 60:100–109.
  • Rahimi-Gorji M, Pourmehran O, Gorji-Bandpy M, Gorji TB. 2015. CFD simulation of airflow behavior and particle transport and deposition in different breathing conditions through the realistic model of human airways. J Mol Liq. 209:121–133.
  • Robert JM. 1988. Describing the uncertainties in experimental results. Exp Therm Fluid Sci. 1:3–17.
  • Rogers DF. 1994. Airway goblet cells: responsive and adaptable front-line defenders. Eur Respir J. 7(9):1690–1708.
  • Salim SM, Cheah SC. 2009. Wall y + strategy for dealing with wall-bounded turbulent flows. Proceedings of the International Multi-Conference of Engineers and Computer Scientists (IMECS March 18 - 20, 2009, Hong Kong). 2: ISBN: 978-988-17012-7-5.
  • Shang Y, Dong J, Tian L, Inthavong K, Tu J. 2019. Detailed computational analysis of flow dynamics in an extended respiratory airway model. Clin Biomech (Bristol, Avon). 61:105–111.
  • Shanley KT, Zamankhan P, Ahmadi G, Hopke PK, Cheng Y-S. 2008. Numerical simulations investigating the regional and overall deposition efficiency of the human nasal cavity. Inhalation Toxicol. 20(12):1093–1100.
  • Srivastav VK, Paul AR, Jain A. 2019. Capturing the wall turbulence in CFD simulation of human respiratory tract. Math Comput Simul. 160(C):23–38.
  • Tabe R, Ghalichi F, Hossainpour S, Ghasemzadeh K. 2016. Laminar-to-turbulence and relaminarization zones detection by simulation of low Reynolds number turbulent blood flow in large stenosed arteries. Biomed Mater Eng. 27(2–3):119–129.
  • Tahavvor AR, Zarrinchang P. 2018. Numerical simulation of turbulent airflow and micro-particle deposition in upper human respiratory system. JAFM. 11(3):577–584.
  • Tang P, Kwok PCK, Tong ZB, Yang RY, Raper JA, Chan HK. 2012. Does the United States Pharmacopeia throat introduce de-agglomeration of carrier-free powder from inhalers? Pharm Res. 29(7):1797–1807.
  • Tawhai MH, Lin CL. 2010. Image-based modeling of lung structure and function. J Magn Reson Imaging. 32(6):1421–1431.
  • Tsuda A, Henry FS, Butler JP. 2013. Particle transport and deposition: basic physics of particle kinetics. Compr Physiol. 3(4):1437–1471.
  • Tu J, Inthavong K, Ahmadi G. 2013. Computational fluid and particle dynamics in the human respiratory system. Dordrecht Heidelberg: Springer. ISBN 978-94-007-4487-5.
  • van Ertbruggen C, Hirsch C, Paiva M. 2005. Anatomically based three-dimensional model of airways to simulate flow and particle transport using computational fluid dynamics. J Appl Physiol. 98(3):970–980.
  • Walters DK, Luke WH. 2011. Computational fluid dynamics simulations of particle deposition in large-scale, multigenerational lung models. J Biomech Eng. 133(1):011003–011008.
  • Wheatley JR, Amis TC, Engel LA. 1991. Nasal and oral airway pressure-flow relationships. J Appl Physiol. 71(6):2317–2324.
  • Xi J, Longest PW, Martonen TB. 2008. Effects of the laryngeal jet on nano- and microparticle transport and deposition in an approximate model of the upper tracheobronchial airways. J Appl Physiol. 104(6):1761–1777.
  • Xi J, Si X, Kim JW, Berlinski A. 2011. Simulation of airflow and aerosol deposition in the nasal cavity of a 5-year-old child. J Aerosol Sci. 42(3):156–173.
  • Xi J, Yang T, Talaat K, Wen T, Zhang Y, Klozik S, Peters S. 2018. Visualization of local deposition of nebulized aerosols in a human upper respiratory tract model. J Vis. 21 (2):225–237.
  • Xi JX, Yuan JYE, Yang MG, Si XH, Zhou Y, Cheng YS. 2016. Parametric study on mouth-throat geometrical factors on deposition of orally inhaled aerosols. J Aerosol Sci. 99:94–106.
  • Yamada Y, Cheng YS, Yeh HC, Swift DL. 1988. Inspiratory and expiratory deposition of ultrafine particles in a human nasal cast. Inhalation Toxicol. 1:1–11.
  • Zamankhan P, Ahmadi G, Wang Z, Hopke PK, Su W-C, Cheng Y-S, Leonard D. 2006. Airflow and deposition of nano-particles in human nasal cavity. Aerosol Sci Technol. 40(6):463–476.
  • Zhang Z, Kleinstreuer C. 2011. Laminar-to-turbulent fluid–nanoparticle dynamics simulations: model comparisons and nanoparticle-deposition applications. Int J Numer Meth Biomed Engng. 27(12):1930–1950.
  • Zhang Z, Kleinstreuer C, Kim CS. 2001. Effects of curved inlet tubes on air flow and particle deposition in bifurcating lung models. J Biomech. 34(5):659–669.
  • Zhu JH, Lee HP, Lim KM, Lee SJ, Wang DY. 2011. Evaluation and comparison of nasal airway flow patterns among three subjects from Caucasian, Chinese and Indian ethnic groups using computational fluid dynamics simulation. Respir Physiol Neurobiol. 175(1):62–69.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.