595
Views
4
CrossRef citations to date
0
Altmetric
Research Article

On the importance of tunica intima in the aging aorta: a three-layered in silico model for computing wall stresses in abdominal aortic aneurysms

, , , &
Pages 467-484 | Received 10 Feb 2020, Accepted 07 Oct 2020, Published online: 22 Oct 2020

References

  • Ahamed T, Dorfmann L, Ogden R. 2016. Modelling of residually stressed materials with application to aaa. J Mech Behav Biomed Mater. 61:221–234.
  • Akyildiz AC, Speelman L, Gijsen FJ. 2014. Mechanical properties of human atherosclerotic intima tissue. J Biomech. 47(4):773–783.
  • Alastrué V, Peña E, Martínez MÁ, Doblaré M. 2007. “Assessing the use of fic arteries” opening angle method” to enforce residual stresses in patient-specific. Ann Biomed Eng. 35(10):1821–1837.
  • Amabili M, Balasubramanian P, Bozzo I, Breslavsky ID, Ferrari G. 2019. Layer-specific hyperelastic and viscoelastic characterization of human descending thoracic aortas. J Mech Behav Biomed Mater. 99:27–46.
  • Barrett HE, Van der Heiden K, Farrell E, Gijsen FJ, Akyildiz AC. 2019. Calcifications in atherosclerotic plaques and impact on plaque biomechanics. J Biomech. 87:1–12.
  • Chandra S, Raut SS, Jana A, Biederman RW, Doyle M, Muluk SC, Finol EA. 2013. Fluid-structure interaction modeling of abdominal aortic aneurysms: The impact of patient-specific inflow conditions and fluid/solid coupling. J Biomech Eng. 135(8):81001–081001. 14.
  • Dassault Systèmes. 2014a. ABAQUS 6.14 Benchmarks Guide. Material Tests. Anisotropic hyperelastic modeling of arterial layers.
  • Dassault Systèmes. 2014b. ABAQUS 6.14 Documentation.
  • Deveja RP, Iliopoulos DC, Kritharis EP, Angouras DC, Sfyris D, Papadodima SA, Sokolis DP. 2018. Effect of aneurysm and bicuspid aortic valve on layer-specific ascending aorta mechanics. Ann Thorac Surg. 106(6):1692–1701.
  • Díaz J. 2016. Aneupy. A Python code for parametric generation of abdominal aortic aneurysms; Jun. http://github.com/jacobo-diaz/aneupy.
  • Galland R, Whiteley M, Magee T. 1998. The fate of patients undergoing surveillance of small abdominal aortic aneurysms. Eur J Vasc Endovasc Surg. 16(2):104–109.
  • Gao F, Ohta O, Matsuzawa T. 2008. Fluid-structure interaction in layered aortic arch aneurysm model: assessing the combined influence of arch aneurysm and wall stiffness. Australas Phys Eng Sci Med. 31(1):32–41.
  • Gao F, Ueda H, Gang L, Okada H. 2013. Fluid structure interaction simulation in three-layered aortic aneurysm model under pulsatile flow: comparison of wrapping and stenting. J Biomech. 46(7):1335–1342.
  • Gao F, Watanabe M, Matsuzawa T. 2006. Stress analysis in a layered aortic arch model under pulsatile blood flow. Biomed Eng Online. 5:25–25.
  • Gasser TC, Gallinetti S, Xing X, Forsell C, Swedenborg J, Roy J. 2012. Spatial orientation of collagen fibers in the abdominal aortic aneurysm's wall and its relation to wall mechanics. Acta Biomater. 8(8):3091–3103.
  • Gasser TC, Ogden RW, Holzapfel GA. 2006. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface. 3(6):15–35.
  • Gee MW, Förster C, Wall WA. 2010. A computational strategy for prestressing patient–specific biomechanical problems under finite deformation. Int J Numer Meth Biomed Eng. 26(1):52–72.
  • Geest JPV, Sacks MS, Vorp DA. 2006. The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. J Biomech. 39(7):1324–1334.
  • Georgakarakos E, Ioannou C, Kamarianakis Y, Papaharilaou Y, Kostas T, Manousaki E, Katsamouris A. 2010. The role of geometric parameters in the prediction of abdominal aortic aneurysm wall stress. Eur J Vasc Endovasc Surg. 39(1):42–48.
  • Gholipour A, Ghayesh MH, Zander A, Mahajan R. 2018. Three-dimensional biomechanics of coronary arteries. Int J Eng Sci. 130:93–114.
  • Glagov S, Zarins CK. 1989. Is intimal hyperplasia an adaptive response or a pathologic process? observations on the nature of nonatherosclerotic intimal thickening. J Vasc Surg. 10(5):571–573.
  • Grootenboer N, Bosch JL, Hendriks JM, van Sambeek MRHM. 2009. Epidemiology, aetiology, risk of rupture and treatment of abdominal aortic aneurysms: does sex matter? Eur J Vasc Endovasc Surg. 38(3):278–284.
  • Hans SS, Jareunpoon O, Balasubramaniam M, Zelenock GB. 2005. Size and location of thrombus in intact and ruptured abdominal aortic aneurysms. J Vasc Surg. 41(4):584–588.
  • Holzapfel GA, Gasser TC, Ogden RW. 2000. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast Phys Sci Solids. 61(1–3):1–48.
  • Holzapfel GA, Sommer G, Gasser CT, Regitnig P. 2005. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am J Physiol Heart Circ Physiol. 289(5):H2048–H2058.
  • Humphrey J, Holzapfel G. 2012. Mechanics, mechanobiology, and modeling of human abdominal aorta and aneurysms. J Biomech. 45(5):805–814.
  • Kobielarz M, Kozuń M, Kuzan A, Maksymowicz K, Witkiewicz W, Pezowicz C. 2017. The intima with early atherosclerotic lesions is load-bearing component of human thoracic aorta. Biocybern Biomed Eng. 37(1):35–43.
  • Kühnl A, Erk A, Trenner M, Salvermoser M, Schmid V, Eckstein HH. 2017. Incidence, treatment and mortality in patients with abdominal aortic aneurysms: An analysis of hospital discharge data from 2005–2014. Deutsches Ärzteblatt Int. 114(22–23):391–398.
  • Labrosse MR, Gerson ER, Veinot JP, Beller CJ. 2013. Mechanical characterization of human aortas from pressurization testing and a paradigm shift for circumferential residual stress. J Mech Behav Biomed Mater. 17:44–55.
  • Lederle FA, Wilson SE, Johnson GR, Reinke DB, Littooy FN, Acher CW, Ballard DJ, Messina LM, Gordon IL, Chute EP, et al. 2002. Immediate repair compared with surveillance of small abdominal aortic aneurysms. N Engl J Med. 346(19):1437–1444.
  • LeFevre ML. 2014. Screening for abdominal aortic aneurysm: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 161(4):281–290.
  • Li Z, Kleinstreuer C. 2007. A comparison between different asymmetric abdominal aortic aneurysm morphologies employing computational fluid–structure interaction analysis. Eur J Mech B Fluids. 26(5):615–631.
  • Li ZY, Sadat U, U-King-Im J, Tang TY, Bowden DJ, Hayes PD, Gillard JH. 2010. Association between aneurysm shoulder stress and abdominal aortic aneurysm expansion: a longitudinal follow-up study. Circulation. 122(18):1815–1822.
  • Li ZY, U-King-Im J, Tang TY, Soh E, See TC, Gillard JH. 2008. Impact of calcification and intraluminal thrombus on the computed wall stresses of abdominal aortic aneurysm. J Vasc Surg. 47(5):928–935.
  • Maier A, Gee MW, Reeps C, Eckstein HH, Wall WA. 2010. Impact of calcifications on patient-specific wall stress analysis of abdominal aortic aneurysms. Biomech Model Mechanobiol. 9(5):511–521.
  • Martino ED, Guadagni G, Fumero A, Ballerini G, Spirito R, Biglioli P, Redaelli A. 2001. Fluid–structure interaction within realistic three-dimensional models of the aneurysmatic aorta as a guidance to assess the risk of rupture of the aneurysm. Med Eng Phys. 23(9):647–655.
  • Movat HZ, More RH, Haust MD. 1958. The diffuse intimal thickening of the human aorta with aging. Am J Pathol. 34(6):1023–1031.
  • Open Cascade. 2015. SALOME 7.5.1. The open source integration platform for numerical simulation.
  • Pierce DM, Fastl TE, Rodriguez-Vila B, Verbrugghe P, Fourneau I, Maleux G, Herijgers P, Gomez EJ, Holzapfel GA. 2015. A method for incorporating three-dimensional residual stretches/stresses into patient-specific finite element simulations of arteries. J Mech Behav Biomed Mater. 47:147–164.
  • Raghavan M, Vorp DA, Federle MP, Makaroun MS, Webster MW. 2000. Wall stress distribution on three-dimensionally reconstructed models of human abdominal aortic aneurysm. J Vasc Surg. 31(4):760–769.
  • Raghavan ML, Hanaoka MM, Kratzberg JA, Higuchi ML, da Silva ES. 2011. Biomechanical failure properties and microstructural content of ruptured and unruptured abdominal aortic aneurysms. J Biomech. 44(13):2501–2507.
  • Raghavan ML, Kratzberg J, Castro de Tolosa EMM, Hanaoka MM, Walker P, da Silva ES, de Tolosa E. 2006. Regional distribution of wall thickness and failure properties of human abdominal aortic aneurysm. J Biomech. 39(16):3010–3016.
  • Raghavan ML, Vorp DA. 2000. Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J Biomech. 33(4):475–482.
  • Raghavan ML, Webster MW, Vorp DA. 1996. Ex vivo biomechanical behavior of abdominal aortic aneurysm: assessment using a new mathematical model. Ann Biomed Eng. 24(5):573–582.
  • Rodríguez JF, Martufi G, Doblaré M, Finol EA. 2009. The effect of material model formulation in the stress analysis of abdominal aortic aneurysms. Ann Biomed Eng. 37(11):2218–2221.
  • Rodríguez JF, Ruiz C, Doblaré M, Holzapfel GA. 2008. Mechanical stresses in abdominal aortic aneurysms: Influence of diameter, asymmetry, and material anisotropy. J Biomech Eng. 130(2):021023.
  • Sassani SG, Kakisis J, Tsangaris S, Sokolis DP. 2015. Layer-dependent wall properties of abdominal aortic aneurysms: experimental study and material characterization. J Mech Behav Biomed Mater. 49:141–161.
  • Schriefl AJ, Zeindlinger G, Pierce DM, Regitnig P, Holzapfel GA. 2012. Determination of the layer-specific distributed collagen fibre orientations in human thoracic and abdominal aortas and common iliac arteries. J R Soc Interface. 9(71):1275–1286.
  • Scotti CM, Jimenez J, Muluk SC, Finol EA. 2008. Wall stress and flow dynamics in abdominal aortic aneurysms: finite element analysis vs. fluid-structure interaction. Comput Methods Biomech Biomed Eng. 11(3):301–322.
  • Scotti CM, Shkolnik AD, Muluk SC, Finol EA. 2005. Fluid-structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness. Biomed Eng Online. 4(1):64.
  • Simsek FG, Kwon YW. 2015. Investigation of material modeling in fluid-structure interaction analysis of an idealized three-layered abdominal aorta: aneurysm initiation and fully developed aneurysms. J Biol Phys. 41(2):173–201.
  • Sokolis DP, Kritharis EP, Iliopoulos DC. 2012. Effect of layer heterogeneity on the biomechanical properties of ascending thoracic aortic aneurysms. Med Biol Eng Comput. 50(12):1227–1237.
  • Sokolis DP, Savva GD, Papadodima SA, Kourkoulis SK. 2017. Regional distribution of circumferential residual strains in the human aorta according to age and gender. J Mech Behav Biomed Mater. 67:87–100.
  • Sokolis DP. 2015. Effects of aneurysm on the directional, regional, and layer distribution of residual strains in ascending thoracic aorta. J Mech Behav Biomed Mater. 46:229–243.
  • Sokolis DP. 2019. Regional distribution of layer-specific circumferential residual deformations and opening angles in the porcine aorta. J Biomech. 96:109335.
  • Strbac V, Pierce D, Rodriguez-Vila B, Sloten JV, Famaey N. 2017. Rupture risk in abdominal aortic aneurysms: a realistic assessment of the explicit gpu approach. J Biomech. 56:1–9.
  • Vito RP, Hickey J. 1980. The mechanical properties of soft tissues–II: the elastic response of arterial segments. J Biomech. 13(11):951–957.
  • Vorp DA, Raghavan M, Webster MW. 1998. Mechanical wall stress in abdominal aortic aneurysm: Influence of diameter and asymmetry. J Vasc Surg. 27(4):632–639.
  • Wang DH, Makaroun MS, Webster MW, Vorp DA. 2002. Effect of intraluminal thrombus on wall stress in patient-specific models of abdominal aortic aneurysm. J Vasc Surg. 36(3):598–604.
  • Wang X, Li X. 2011. Computational simulation of aortic aneurysm using fsi method: Influence of blood viscosity on aneurismal dynamic behaviors. Comput Biol Med. 41(9):812–821.
  • Weisbecker H, Pierce DM, Regitnig P, Holzapfel GA. 2012. Layer-specific damage experiments and modeling of human thoracic and abdominal aortas with non-atherosclerotic intimal thickening. J Mech Behav Biomed Mater. 12:93–106.
  • Xenos M, Rambhia SH, Alemu Y, Einav S, Labropoulos N, Tassiopoulos A, Ricotta JJ, Bluestein D. 2010. Patient-based abdominal aortic aneurysm rupture risk prediction with fluid structure interaction modeling. Ann Biomed Eng. 38(11):3323–3337.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.