273
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Numerical study of hemodynamics in a complete coronary bypass with venous and arterial grafts and different degrees of stenosis

, , &
Pages 883-896 | Received 09 Apr 2020, Accepted 26 Nov 2020, Published online: 12 Dec 2020

References

  • ANSYS Inc. 2016. ANSYS Academic Research, Release 16.0, Help System, ANSYS Inc.
  • Arima M, Kanoh T, Suzuki T, Kuremoto K, Tanimoto K, Oigawa T, Matsuda S. 2005. Serial angiographic follow-up beyond 10 years after coronary artery bypass grafting. Circ J. 69(8):896–902.
  • Bertolotti C, Deplano V, Fuseri J, Dupouy P. 2001. Numerical and experimental models of post-operative realistic flows in stenosed coronary bypasses. J Biomech. 34(8):1049–1064.
  • Chaichana T, Sun Z, Jewkes J. 2014. Impact of plaques in the left coronary artery on wall shear stress and pressure gradient in coronary side branches. Comput Methods Biomech Biomed Engin. 17(2):108–118.
  • Chen J, Lu X-Y, Wang W. 2006. Non-Newtonian effects of blood flow on hemodynamics in distal vascular graft anastomoses. J Biomech. 39(11):1983–1995.
  • Deb S, Wijeysundera HC, Ko DT, Tsubota H, Hill S, Fremes SE. 2013. Coronary artery bypass graft surgery vs percutaneous interventions in coronary revascularization: a systematic review. JAMA. 310(19):2086–2095.
  • Ding J, Liu Y, Wang F, Bai F. 2012. Impact of competitive flow on hemodynamics in coronary surgery: numerical study of ITA-LAD model. Comput Math Methods Med. 2012:356187.
  • Dong J, Sun Z, Inthavong K, Tu J. 2015. Fluid-structure interaction analysis of the left coronary artery with variable angulation. Comput Methods Biomech Biomed Engin. 18(14):1500–1508.
  • Donovan D, Schmidt SP, Townshend SP, Njus GO, Sharp WV. 1990. Material and structural characterization of human saphenous vein. J Vasc Surg. 12(5):531–537.
  • Galpin PF, Broberg RB, Hutchinson BR. 1995. Three-dimensional Navier-Stokes predictions of steady-state rotor/stator interaction with pitch change. Third Annual Conference of the CFD, Society of Canada, Banff, Alberta. Canada: Advanced Scientific Computing ltd.
  • Guerciotti B, Vergara C. 2018. Computational comparison between Newtonian and non-Newtonian blood rheologies in stenotic vessels. In: P. Wriggers and T. Lenarz editors. Biomedical technology, lecture notes in applied and computational mechanics. Vol. 84, Switzerland: Springer; p. 169–183.
  • Guerciotti B, Vergara C, Ippolito S, Quarteroni A, Antona C, Scrofani R. 2017. Computational study of the risk of restenosis in coronary bypasses. Biomech Model Mechanobiol. 16(1):313–332.
  • Guerciotti B, Vergara C, Ippolito S, Quarteroni A, Antona C, Scrofani R. 2017. A computational fluid-structure interaction analysis of coronary Y-grafts. Med Eng Phys. 47(1):117–127.
  • Hofer M, Rappitsch G, Perktold K, Trubel W, Schima H. 1996. Numerical study of wall mechanics and fluid dynamics in end-to-side anastomoses and correlation to intimal hyperplasia. J Biomech. 29(10):1297–1308.
  • Holzapfel GA, Eberlein R, Wriggers P, Weizsäcker HW. 1996. Large strain analysis of soft biological membranes: Formulation and finite element analysis. Comput Meth Appl Mech Eng. 132(1-2):45–61.
  • Holzapfel G, Gasser T. 2001. A viscoelastic model for fiber-reinforced composites at finite strains: Continuum basis, computational aspects and applications. Comput Meth Appl Mech Eng. 190(34):4379–4403.
  • Hoque KE, Ferdowsa M, Sawall S, Tzirtzilakis EE. 2020. The effect of hemodynamic parameters in patient-based coronary artery models with serial stenoses: normal and hypertension cases. Comput. Methods Biomech Biomed Eng. 23(9):467–475.
  • Kamangar S, Anjum Badruddin I, Badarudin A, Nik-Ghazali N, Govindaraju K, Salman Ahmed NJ, Yunus Khan TM. 2017. Influence of stenosis on hemodynamic parameters in the realistic left coronary artery under hyperemic conditions. Comput Methods Biomech Biomed Engin. 20(4):365–372.
  • Karimi A, Navidbakhsh M, Razaghi R, Haghpanahi M. 2014. A computational fluid-structure interaction model for plaque vulnerability assessment in atherosclerotic human coronary arteries. J Appl Phys. 115(14):144702.
  • Karimi A, Navidbakhs M, Rahmati SM, Sera T, Kudo S. 2017. A combination of experimental and numerical methods to investigate the role of strain rate on the mechanical properties and collagen fiber orientations of the healthy and atherosclerotic human coronary arteries. Bioengineered. 8(2):154–170.
  • Kawahito S, Takano T, Nakata K, Maeda T, Nonaka K, Linneweber J, Schulte-Eistrup S, Sato T, Mikami M, Glueck J, et al. 2001. Analysis of the Arterial Blood Pressure Waveform Using Fast Fourier Transform Technique During Left Ventricular Nonpulsatile Assistance. In Vitro Study. Artif. Organs. 24(7):850–853.
  • Kawahito S, Takano T, Nakata K, Maeda T, Nonaka K, Linneweber J, Schulte-Eistrup S, Sato T, Mikami M, Glueck J, Nosé, et al. 2000. Analysis of the arterial blood pressure waveform during left ventricular nonpulsatile assistance in animal models. Artif Organs. 24(10):816–820.
  • Khanafer K, Bull J, Berguer R. 2009. Fluid–structure interaction of turbulent pulsatile flow within a flexible wall axisymmetric aortic aneurysm model. Europ J Mech/B Fluids. 28(1):88–102.
  • Koksungnoen S, Rattanadecho P, Wongchadakul P. 2018. 3D numerical model of blood flow in the coronary artery bypass graft during no pulse and pulse situations: Effects of an anastomotic angle and characteristics of fluid. J Mech Sci Technol. 32(9):4545–4552.
  • Matsuura K, Jin WW, Liu H, Matsumiya G. 2018. Computational fluid dynamics study of the end-side and sequential coronary artery bypass anastomoses in a native coronary occlusion model. Interact Cardiovasc Thorac Surg. 26(4):583–589.
  • Moireau P, Xiao N, Astorino M, Figueroa CA, Chapelle D, Taylor CA, Gerbeau J-F. 2012. External tissue support and fluid-structure simulation in blood flows. Biomech Model Mechanobiol. 11(1-2):1–18.
  • Nichols WW, O Rourke M. 1998. McDonald's blood flow in arteries: Theoretical, experimental and clinical principles. 4th ed. London: Arnold E.
  • Nobile F, Pozzoli M, Vergara C. 2013. Time accurate partitioned algorithms for the solution of fluid–structure interaction problems in haemodynamics. Comput Fluids. 86:470–482.
  • Owida AA, Do H, Morsi YS. 2012. Numerical analysis of coronary artery bypass grafts: an overview. Comput Meth Prog Biomed. 108(2):689–705.
  • Ramachandra A, Kahn A, Marsden A-L. 2016. Patient-specific simulations reveal significant differences in mechanical stimuli in venous and arterial coronary grafts. J Cardiovasc Transl Res. 9(4):279–290.
  • Razaghi R, Karimi A, Rahmani S, Navidbakhsh M. 2016. A computational fluid-structure interaction model of the blood flow in the healthy and varicose saphenous vein. Vascular. 24(3):254–263.
  • Tang D, Yang C, Kobayashi S, Zheng J, Vito RP. 2003. Effect of stenosis asymmetry on blood flow and artery compression: A three-dimensional fluid-structure interaction model. Ann Biomed Eng. 31(10):1182–1193.
  • Vimmr J, Jonášová A, Bublík O. 2013. Numerical analysis of non-Newtonian blood flow and wall shear stress in realistic single, double and triple aorto-coronary bypasses. Int J Numer Method Biomed Eng. 29(10):1057–1081.
  • Wong ND. 2014. Epidemiological studies of CHD and the evolution of preventive cardiology. Nat Rev Cardiol. 11(5):276–289.
  • Zhang JM, Chua LP, Ghista DN, Yu SCM, Tan YS. 2008. Numerical investigation and identification of susceptible sites of atherosclerotic lesion formation in a complete coronary artery bypass model. Med Biol Eng Comput. 46(7):689–699.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.