201
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Accurate simulation of the herniated cervical intervertebral disc using controllable expansion: a finite element study

ORCID Icon, , &
Pages 897-904 | Received 05 Jul 2020, Accepted 26 Nov 2020, Published online: 17 Dec 2020

References

  • Bailly N, Diotalevi L, Beauséjour MH, Wagnac É, Mac-Thiong JM, Petit Y. 2020. Numerical investigation of the relative effect of disc bulging and ligamentum flavum hypertrophy on the mechanism of central cord syndrome. Clin Biomech (Bristol, Avon). 74:58–65.
  • Baptiste DC, Fehlings MG. 2006. Pathophysiology of cervical myelopathy. Spine J. 6(6 SUPPL):190–197.
  • Carlson GD, Gorden CD, Oliff HS, Pillai JJ, Lamanna JC. 2003. Sustained spinal cord compression. Part I: time-dependent effect on long-term pathophysiology. J Bone Jt Surg - Ser A. 85(1):86–94.
  • Cunwei J, Wangpeng H, Yang H. 1999. The relation between the cervical intervertebral disc, vertebral canal and its content: image anatomy study. Chin J Clin Anat. 17(4):317–319.
  • Erbulut DU, Zafarparandeh I, Lazoglu I, Ozer AF. 2014. Application of an asymmetric finite element model of the C2-T1 cervical spine for evaluating the role of soft tissues in stability. Med Eng Phys. 36(7):915–921.
  • Gómez FS, Lorza RL, Bobadilla MC, García RE. 2017. Improving the process of adjusting the parameters of finite element models of healthy human intervertebral discs by the multi-response surface method. Materials (Basel). 10(10):1116–1139.
  • Gruner JA. 1992. A monitored contusion model of spinal cord injury in the rat. J Neurotrauma. 9(2):123–128.
  • Hung TK, Lin HS, Bunegin L, Albin MS. 1982. Mechanical and neurological response of cat spinal cord under static loading. Surg Neurol. 17(3):213–217.
  • Ichihara K, Taguchi T, Sakuramoto I, Kawano S, Kawai S. 2003. Mechanism of the spinal cord injury and the cervical spondylotic myelopathy: new approach based on the mechanical features of the spinal cord white and gray matter. J Neurosurg. 99(3 Suppl):278–285.
  • Ichihara K, Taguchi T, Shimada Y, Sakuramoto I, Kawano S, Kawai S. 2001. Gray matter of the bovine cervical spinal cord is mechanically more rigid and fragile than the white matter. J Neurotrauma. 18(3):361–367.
  • Kokubun S, Tanaka Y. 1995. Types of cervical disc herniation and relation to myelopathy and radiculopathy. J Back Musculoskelet Rehabil. 5(2):145–154.
  • Li X-F, Dai L-Y. 2009. Three-dimensional finite element model of the cervical spinal cord: preliminary results of injury mechanism analysis. Spine (Phila Pa 1976). 34(11):1140–1147.
  • Maikos JT, Qian Z, Metaxas D, Shreiber DI. 2008. Finite element analysis of spinal cord injury in the rat. J Neurotrauma. 25(7):795–816.
  • Nishida N, Kanchiku T, Imajo Y, Suzuki H, Yoshida Y, Kato Y, Nakashima D, Taguchi T. 2016. Stress analysis of the cervical spinal cord: impact of the morphology of spinal cord segments on stress. J Spinal Cord Med. 39(3):327–334.
  • Nishida N, Kato Y, Imajo Y, Kawano S, Taguchi T. 2012. Biomechanical analysis of cervical spondylotic myelopathy: the influence of dynamic factors and morphometry of the spinal cord. J Spinal Cord Med. 35(4):256–261.
  • Nouri A, Tetreault L, Singh A, Karadimas SK, Fehlings MG. 2015. Degenerative cervical myelopathy: epidemiology, genetics, and pathogenesis. Spine (Phila Pa 1976). 40(12):E675–E693.
  • Ozawa H, Matsumoto T, Ohashi T, Sato M, Kokubun S. 2004. Mechanical properties and function of the spinal pia mater. J Neurosurg Spine. 1(1):122–127.
  • Persson C, Summers J, Hall RM. 2011. The importance of fluid-structure interaction in spinal trauma models. J Neurotrauma. 28(1):113–125.
  • Somovilla-Gómez F, Iñiguez-Macedo S, Jiménez-Ruiz E, Muro-Fraguas L, Gañán-Catalina G, Leciñana-Soldevilla Á, Corral-Bobadilla M, Díaz-Bertrana-Sánchez C, Lostado-Lorza R. 2020. 3D-printed canine tibia model from clinical computed tomography data. Lect Notes Mech Eng. 254–262.
  • Somovilla-Gómez F, Lostado-Lorza R, Corral-Bobadilla M, Escribano-García R. 2020. Improvement in determining the risk of damage to the human lumbar functional spinal unit considering age, height, weight and sex using a combination of FEM and RSM. Biomech Model Mechanobiol. 19(1):351–387.
  • Taso M, Fradet L, Callot V, Arnoux PJ. 2015. Anteroposterior compression of the spinal cord leading to cervical myelopathy: a finite element analysis. Comput Methods Biomech Biomed Eng. 18(sup1):2070–2071.
  • Young WF. 2000. Cervical spondylotic myelopathy: a common cause of spinal cord dysfunction in older persons. Am Fam Physician. 62(5):1064–1070.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.