229
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Simulated muscle activity in locomotion: implications of co-occurrence between effort minimisation and gait modularity for robot-assisted rehabilitation therapy

ORCID Icon & ORCID Icon
Pages 1380-1392 | Received 18 Jun 2019, Accepted 10 Feb 2021, Published online: 01 Mar 2021

References

  • Albrecht S, Leibold M, Ulbrich M. 2012. A bilevel optimization approach to obtain optimal cost functions for human arm movements. Numer Algebra Control Optim. 2(1):105–127.
  • Alibeji NA, Molazadeh V, Moore-Clingenpeel F, Sharma N. 2018a. A muscle synergy-inspired control design to coordinate functional electrical stimulation and a powered exoskeleton: artificial generation of synergies to reduce input dimensionality. IEEE Control Syst. 38(6):35–60.
  • Alibeji NA, Molazadeh V, Dicianno BE, Sharma N. 2018b. A control scheme that uses dynamic postural synergies to coordinate a hybrid walking neuroprosthesis: Theory and experiments. Front Neurosci. 12:159.
  • Allen JL, Kautz SA, Neptune RR. 2013. The influence of merged muscle excitation modules on post-stroke hemiparetic walking performance. Clin Biomech (Bristol, Avon). 28(6):697–704.
  • Anderson FC, Pandy MG. 2001a. Dynamic optimization of human walking. J Biomech Eng. 123(5):381–390.
  • Anderson FC, Pandy MG. 2001b. Static and dynamic optimization solutions for gait are practically equivalent. J Biomech. 34(2):153–161.
  • Bovi G, Rabuffetti M, Mazzoleni P, Ferrarin M. 2011. A multiple-task gait analysis approach: kinematic, kinetic and EMG reference data for healthy young and adult subjects. Gait Posture. 33(1):6–13.
  • Bowden MG, Clark DJ, Kautz SA. 2010. Evaluation of abnormal synergy patterns poststroke: relationship of the fugl-meyer assessment to hemiparetic locomotion. Neurorehabil Neural Repair. 24(4):328–337.
  • Cheung VC, Turolla A, Agostini M, Silvoni S, Bennis C, Kasi P, Paganoni S, Bonato P, Bizzi E. 2012. Muscle synergy patterns as physiological markers of motor cortical damage. Proc Natl Acad Sci USA. 109(36):14652–14656.
  • Clark DJ, Ting LH, Zajac FE, Neptune RR, Kautz SA. 2010. Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke. J Neurophysiol. 103(2):844–857.
  • Colombo G, Joerg M, Schreier R, Dietz V. 2000. Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev. 37(6):693–700.
  • Colombo G, Wirz M, Dietz V. 2001. Driven gait orthosis for improvement of locomotor training in paraplegic patients. Spinal Cord. 39(5):252–255.
  • d’Avella A, Saltiel P, Bizzi E. 2003. Combinations of muscle synergies in the construction of a natural motor behavior. Nat Neurosci. 6(3):300–308.
  • Dobkin BH, Duncan PW. 2012. Should body weight-supported treadmill training and robotic-assistive steppers for locomotor training trot back to the starting gate? Neurorehabil Neural Repair. 26(4):308–317.
  • Duschau-Wicke A, von Zitzewitz J, Caprez A, Lunenburger L, Riener R. 2010. Path control: a method for patient-cooperative robot-aided gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 18(1):38–48.
  • Emken JL, Bobrow JE, Reinkensmeyer DJ. 2005. Robotic movement training as an optimization problem: designing a controller that assists only as needed. 9th International Conference on Rehabilitation Robotics, Citeseer, ICORR 2005. p. 307–312.
  • Eng JJ, Tang P-F. 2007. Gait training strategies to optimize walking ability in people with stroke: a synthesis of the evidence. Expert Rev Neurother. 7(10):1417–1436.
  • Garate VR, Parri A, Yan T, Munih M, Lova RM, Vitiello N, Ronsse R. 2016. Walking assistance using artificial primitives: a novel bioinspired framework using motor primitives for locomotion assistance through a wearable cooperative exoskeleton. IEEE Robot Automat Mag. 23(1):83–95.
  • Geyer H, Herr H. 2010. A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities. IEEE Trans Neural Syst Rehabil Eng. 18(3):263–273.
  • Gizzi L, Nielsen JF, Felici F, Moreno JC, Pons JL, Farina D. 2012. Motor modules in robot-aided walking. J Neuroeng Rehabil. 9:76.
  • Happee R. 1994. Inverse dynamic optimization including muscular dynamics, a new simulation method applied to goal directed movements. J Biomech. 27(7):953–960.
  • Hesse S, Waldner A, Tomelleri C. 2010. Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients. J Neuroeng Rehabil. 7:30.
  • Hidler JM, Wall AE. 2005. Alterations in muscle activation patterns during robotic-assisted walking. Clin Biomech (Bristol, Avon). 20(2):184–193.
  • Hidler J, Wisman W, Neckel N. 2008. Kinematic trajectories while walking within the Lokomat robotic gait-orthosis. Clin Biomech . 23(10):1251–1259.
  • Hidler J, Nichols D, Pelliccio M, Brady K, Campbell DD, Kahn JH, Hornby TG. 2009. Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabil Neural Repair. 23(1):5–13.
  • Hornby TG, Campbell DD, Kahn JH, Demott T, Moore JL, Roth HR. 2008. Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study. Stroke. 39(6):1786–1792.
  • Hornby TG, Reisman DS, Ward IG, Scheets PL, Miller A, Haddad D, Fox EJ, Fritz NE, Hawkins K, Henderson CE, et al. 2020. Clinical practice guideline to improve locomotor function following chronic stroke, incomplete spinal cord injury, and brain injury. J Neurol Phys Ther. 44(1):49–100.
  • Hussein S, Krüger J. 2011. Patient adaptive control of end-effector based gait rehabilitation devices using a haptic control framework. IEEE International Conference on Rehabilitation Robotics (ICORR), IEEE, p. 1–6.
  • Hussein S, Schmidt H, Volkmar M, Werner C, Helmich I, Piorko F, Kruger J, Hesse S. 2008. Muscle coordination in healthy subjects during floor walking and stair climbing in robot assisted gait training. 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, IEEE, p. 1961–1964.
  • Ivanenko YP, Cappellini G, Dominici N, Poppele RE, Lacquaniti F. 2005. Coordination of locomotion with voluntary movements in humans. J Neurosci. 25(31):7238–7253.
  • Ivanenko YP, Poppele RE, Lacquaniti F. 2006. Motor control programs and walking. Neuroscientist. 12(4):339–348.
  • Iwata H, Yano H, Nakaizumi F. 2001. Gait master: a versatile locomotion interface for uneven virtual terrain. Proceedings of the IEEE Virtual Reality 2001 Conf., Yokohama, Japan: IEEE CS Press, p. 131.
  • Kim HY, You JSH. 2017. A review of robot-assisted gait training in stroke patients. Brain Neurorehabil. 10(2):e9. doi:https://doi.org/10.12786/bn.201 7.10.e9
  • Kwakkel G, Lannin NA, Borschmann K, English C, Ali M, Churilov L, Saposnik G, Winstein C, Van Wegen EE, Wolf SL, et al. 2017. Standardized measurement of sensorimotor recovery in stroke trials: consensus-based core recommendations from the stroke recovery and rehabilitation roundtable. Neurorehabil Neural Repair. 31(9):784–792.
  • Lacquaniti F, Ivanenko YP, Zago M. 2012. Patterned control of human locomotion. J Physiol. 590(10):2189–2199.
  • Marchal-Crespo L, Reinkensmeyer DJ. 2009. Review of control strategies for robotic movement training after neurologic injury. J Neuroeng Rehabil. 6:20.
  • Marchal-Crespo L, Riener R. 2018. Robot-assisted gait training. In: Rehabilitation robotics. Amsterdam, the Netherlands: Elsevier. p. 227–240.
  • Mayich DJ, Novak A, Vena D, Daniels TR, Brodsky JW. 2014. Gait analysis in orthopedic foot and ankle surgery-topical review, part 1: principles and uses of gait analysis. Foot Ankle Int. 35(1):80–90.
  • Mehrabi N, Schwartz MH, Steele KM. 2019. Can altered muscle synergies control unimpaired gait? J Biomech. 90:84–91.
  • Menegaldo LL, de Toledo Fleury A, Weber HI. 2004. Moment arms and musculotendon lengths estimation for a three-dimensional lower-limb model. J Biomech. 37(9):1447–1453.
  • Mikolajczyk T, Ciobanu I, Badea DI, Iliescu A, Pizzamiglio S, Schauer T, Seel T, Seiciu PL, Turner DL, Berteanu M. 2018. Advanced technology for gait rehabilitation: An overview. Adv Mech Eng. 10(7).
  • Moore-Clingenpeel F, Molazadeh V, Sharma N. 2018. An active-subspace-based algorithm for reducing redundancy in a hybrid neuroprosthesis. 2018 IEEE Conference on Decision and Control (CDC), IEEE, p. 4849–4854.
  • Moreno JC, Barroso F, Farina D, Gizzi L, Santos C, Molinari M, Pons JL. 2013. Effects of robotic guidance on the coordination of locomotion. J Neuroeng Rehabil. 10:79.
  • Morone G, Paolucci S, Cherubini A, De Angelis D, Venturiero V, Coiro P, Iosa M. 2017. Robot-assisted gait training for stroke patients: current state of the art and perspectives of robotics. Neuropsychiatr Dis Treat. 13:1303–1311.
  • Neptune RR, Clark DJ, Kautz SA. 2009. Modular control of human walking: a simulation study. J Biomech. 42(9):1282–1287.
  • Neumann DA. 2013. Kinesiology of the musculoskeletal system-e-book: foundations for rehabilitation. St Louis, MO: Elsevier Health Sciences.
  • Ong CF, Geijtenbeek T, Hicks JL, Delp SL. 2019. Predicting gait adaptations due to ankle plantarflexor muscle weakness and contracture using physics-based musculoskeletal simulations. PLoS Comput Biol. 15(10):e1006993.
  • Ranganathan R, Krishnan C, Dhaher YY, Rymer WZ. 2016. Learning new gait patterns: exploratory muscle activity during motor learning is not predicted by motor modules. J Biomech. 49(5):718–725.
  • Routson RL, Clark DJ, Bowden MG, Kautz SA, Neptune RR. 2013. The influence of locomotor rehabilitation on module quality and post-stroke hemiparetic walking performance. Gait Posture. 38(3):511–517.
  • Santos GF, Gomes AA, Sacco IC, Ackermann M. 2017. Predictive simulation of diabetic gait: individual contribution of ankle stiffness and muscle weakening. Gait Posture. 58:208–213.
  • Schmidt H, Hesse S, Bernhardt R, Krüger J. 2005. Hapticwalker—a novel haptic foot device. ACM Trans Appl Percept. 2(2):166–180.
  • Serrancolí G, Font-Llagunes JM, Barjau A. 2014. A weighted cost function to deal with the muscle force sharing problem in injured subjects: a single case study. Proc Inst Mech Eng. 228(3):241–251.
  • Siciliano B, Sciavicco L, Villani L, Oriolo G. 2010. Robotics: modelling, planning and control. Heidelberg, Germany: Springer Science & Business Media.
  • Simpson CS, Sohn MH, Allen JL, Ting LH. 2015. Feasible muscle activation ranges based on inverse dynamics analyses of human walking. J Biomech. 48(12):2990–2997.
  • Srivastava S, Kao P-C, Kim SH, Stegall P, Zanotto D, Higginson JS, Agrawal SK, Scholz JP. 2015. Assist-as-needed robot-aided gait training improves walking function in individuals following stroke. IEEE Trans Neural Syst Rehabil Eng. 23(6):956–963.
  • Ting LH, Chiel HJ, Trumbower RD, Allen JL, McKay JL, Hackney ME, Kesar TM. 2015. Neuromechanical principles underlying movement modularity and their implications for rehabilitation. Neuron. 86(1):38–54.
  • Tomelleri C, Waldner A, Werner C, Hesse S. 2011. Adaptive locomotor training on an end-effector gait robot: Evaluation of the ground reaction forces in different training conditions. IEEE International Conference on Rehabilitation Robotics (ICORR), IEEE, p. 1–5.
  • Van Asseldonk EH, Veneman JF, Ekkelenkamp R, Buurke JH, Van der Helm FC, van der Kooij H. 2008. The effects on kinematics and muscle activity of walking in a robotic gait trainer during zero-force control. IEEE Trans Neural Syst Rehabil Eng. 16(4):360–370.
  • Van Kammen K, Boonstra A, Reinders-Messelink H, den Otter R. 2014. The combined effects of body weight support and gait speed on gait related muscle activity: a comparison between walking in the Lokomat exoskeleton and regular treadmill walking. PloS One. 9(9):e107323.
  • Van Kammen K, Boonstra AM, van der Woude LH, Reinders-Messelink HA, den Otter R. 2016. The combined effects of guidance force, bodyweight support and gait speed on muscle activity during able-bodied walking in the Lokomat. Clin Biomech (Bristol, Avon). 36:65–73.
  • Van Kammen K, Boonstra AM, van der Woude LH, Reinders-Messelink HA, den Otter R. 2017. Differences in muscle activity and temporal step parameters between Lokomat guided walking and treadmill walking in post-stroke hemiparetic patients and healthy walkers. J Neuroeng Rehabil. 14(1):32.
  • Veneman JF, Kruidhof R, Hekman EE, Ekkelenkamp R, Van Asseldonk EH, Van Der Kooij H. 2007. Design and evaluation of the lopes exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 15(3):379–386.
  • Visintin M, Barbeau H, Korner-Bitensky N, Mayo NE. 1998. A new approach to retrain gait in stroke patients through body weight support and treadmill stimulation. Stroke. 29(6):1122–1128.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.