360
Views
3
CrossRef citations to date
0
Altmetric
Research Article

A finite element study of fatigue load effects on total hip joint prosthesis

, & ORCID Icon
Pages 1545-1551 | Received 16 Jul 2020, Accepted 04 Mar 2021, Published online: 22 Mar 2021

References

  • Ait Moussa A, Fischer J, Yadav R, Khandaker M. 2017. Minimizing stress shielding and cement damage in cemented femoral component of a hip prosthesis through computational design optimization. Adv Orthop. 2017:8437956.
  • Amjadi Kashani MR, Nikkhoo M, Khalaf K, Firoozbakhsh K, Arjmand N, Razmjoo A, Parnianpour M. 2014. An in silico parametric model of vertebrae trabecular bone based on density and microstructural parameters to assess risk of fracture in osteoporosis. Proc Inst Mech Eng H. 228(12):1281–1295.
  • Chen L-J, He H, Li Y-M, Li T, Guo X-P, Wang R-F. 2011. Finite element analysis of stress at implant–bone interface of dental implants with different structures. Trans Nonferr Metals Soc China. 21(7):1602–1610.
  • Colic K, Sedmak A, Grbovic A, Burzić M, Hloch S, Sedmak S. 2016. Numerical simulation of fatigue crack growth in hip implants. Procedia Eng. 149:229–235.
  • Desai C, Hirani H, Chawla A. 2015. Life estimation of hip joint prosthesis. J Inst Eng India Ser C. 96(3):261–267.
  • El’Sheikh HF, MacDonald BJ, Hashmi MSJ. 2003. Finite element simulation of the hip joint during stumbling: a comparison between static and dynamic loading. J Mater Process Technol. 143-144:249–255.
  • Griza S, Kwietniewski C, Tarnowski G, Bertoni F, Reboh Y, Strohaecker T, Baumvol I. 2008. Fatigue failure analysis of a specific total hip prosthesis stem design. Int J Fatigue. 30(8):1325–1332.
  • Hambli R, Frikha S, Toumi H, Tavares JM. 2016. Finite element prediction of fatigue damage growth in cancellous bone. Comput Methods Biomech Biomed Eng. 19(5):563–570.
  • Kim K, Forest B, Geringer J. 2011. Two-dimensional finite element simulation of fracture and fatigue behaviours of alumina microstructures for hip prosthesis. Proc Inst Mech Eng H. 225(12):1158–1168.
  • Messellek AC, Ould Ouali M, Benabid Y, Amrouche A, Beloulla A. 2017. Material selection process for femoral component of hip prosthesis using finite element analysis and ranking method. Comput Methods Biomech Biomed Eng. 20(sup1):133–134.
  • Mughal UN, Khawaja HA, Moatamedi M. 2015. Finite element analysis of human femur bone. Int J Multiphys. 9(2):101–108.
  • Niinomi M. 2002. Recent metallic materials for biomedical applications. Metall Mat Trans A. 33(3):477–486.
  • Nikkhoo M, Hassani K, Tavakoli Golpaygani A, Karimi A. 2020. Biomechanical role of posterior cruciate ligament in total knee arthroplasty: A finite element analysis. Comput Methods Programs Biomed. 183:105109.
  • Pekedis M, Yildiz H. 2011. Comparison of fatigue behaviour of eight different hip stems: a numerical and experimental study. JBiSE. 04(10):643–650.
  • Scheerlinck T, Casteleyn PP. 2006. The design features of cemented femoral hip implants. J Bone Joint Surg Br. 88(11):1409–1418.
  • Senalp AZ, Kayabasi O, Kurtaran H. 2007. Static, dynamic and fatigue behavior of newly designed stem shapes for hip prosthesis using finite element analysis. Mater Des. 28(5):1577–1583.
  • Sidambe AT. 2014. Biocompatibility of advanced manufactured titanium implants: A review. Materials (Basel). 7(12):8168–8188.
  • Skowronek P, Twardoch K, Skawiński P, Żołnierz M. 2019. Strenghth analysis of hip joint replacement revision implant. J Theor Appl Mech. 57(1):235–248.
  • Tang G, Wang J, Luo H. 2015. [Fatigue property analysis of prosthesis of hip joint with two different materials]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 32(1):73–76.
  • Vernon PJ, Mackin TJ. 2001. Fatigue failure analysis of a leg press exercise machine; pp. 255–266, Analysis case Studies II, Elsevier, USA.
  • Westerman AP, Moor AR, Stone MH, Stewart TD. 2018. Hip stem fatigue: The implications of increasing patient mass. Proc Inst Mech Eng H. 232(5):520–530.
  • Zameer S, Haneef M. 2015. Fatigue life estimation of artificial hip joint model using finite element method. Mater Today: Proc. 2(4-5):2137–2145.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.