611
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Biomechanical modeling of spinal ligaments: finite element analysis of L4-L5 spinal segment

, , , ORCID Icon &
Pages 1807-1818 | Received 10 Feb 2021, Accepted 17 Apr 2021, Published online: 24 Aug 2021

References

  • Andersson GB, Schultz AB. 1979. Effects of fluid injection on mechanical properties of intervertebral discs. J Biomech. 12(6):453–458.
  • Ayturk UM, Puttlitz CM. 2011. Parametric convergence sensitivity and validation of a finite element model of the human lumbar spine. Comput Methods Biomech Biomed Eng. 14(8):695–705.
  • Bermel EA, Barocas VH, Ellingson AM. 2018. The role of the facet capsular ligament in providing spinal stability. Comput Methods Biomech Biomed Eng. 21(13):712–721.
  • Brinckmann P, Grootenboer H. 1991. Change of disc height, radial disc bulge, and intradiscal pressure from discectomy. An in vitro investigation on human lumbar discs. Spine. 16(6):641–646.
  • Chazal J, Tanguy A, Bourges M, Gaurel G, Escande G, Guillot M, Vanneuville G. 1985. Biomechanical properties of spinal ligaments and a histological study of the supraspinal ligament in traction. J Biomech. 18(3):167–176.
  • Cheung JT-M, Zhang M, Chow DH-K. 2003. Biomechanical responses of the intervertebral joints to static and vibrational loading: a finite element study. Clin Biomech. 18(9):790–799.
  • Crawford RP, Cann CE, Keaveny TM. 2003a. Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone. 33(4):744–750.
  • Crawford RP, Rosenberg WS, Keaveny TM. 2003b. Quantitative computed tomography-based finite element models of the human lumbar vertebral body: effect of element size on stiffness, damage, and fracture strength predictions. J Biomech Eng. 125(4):434–438.
  • Damm N, Rockenfeller R, Gruber K. 2020. Lumbar spinal ligament characteristics extracted from stepwise reduction experiments allow for preciser modeling than literature data. Biomech Model Mechanobiol. 19(3):893–910.
  • Dreischarf M, Zander T, Shirazi-Adl A, Puttlitz C, Adam C, Chen C, Goel V, Kiapour A, Kim Y, Labus K. 2014. Comparison of eight published static finite element models of the intact lumbar spine: predictive power of models improves when combined together. J Biomech. 47(8):1757–1766.
  • El-Rich M, Arnoux P-J, Wagnac E, Brunet C, Aubin C-E. 2009a. Finite element investigation of the loading rate effect on the spinal load-sharing changes under impact conditions. J Biomech. 42(9):1252–1262.
  • El-Rich M, Villemure I, Labelle H, Aubin C. 2009b. Mechanical loading effects on isthmic spondylolytic lumbar segment: finite element modelling using a personalised geometry. Comput Methods Biomech Biomed Eng. 12(1):13–23.
  • Fagan M, Julian S, Siddall D, Mohsen A. 2002. Patient-specific spine models. Part 1: finite element analysis of the lumbar intervertebral disc—a material sensitivity study. Proc Inst Mech Eng H. 216(5):299–314.
  • Heuer F, Schmidt H, Klezl Z, Claes L, Wilke HJ. 2007. Stepwise reduction of functional spinal structures increase range of motion and change lordosis angle. J Biomech. 40(2):271–280.
  • Hortin MS. 2015. Ligament Model Fidelity in Finite Element Analysis of the Human Lumbar Spine Brigham Young University BYU ScholarsArchive
  • Hughes TJ, Liu WK. 1981. Nonlinear finite element analysis of shells: Part I. Three-dimensional shells. Comput Methods in Appl Mech Eng. 26(3):331–362.
  • Jones AC, Wilcox RK. 2008. Finite element analysis of the spine: towards a framework of verification, validation and sensitivity analysis. Med Eng Phys. 30(10):1287–1304.
  • Li H, Wang Z. 2006. Intervertebral disc biomechanical analysis using the finite element modeling based on medical images. Comput Med Imaging Graph. 30(6-7):363–370.
  • Little JP, Adam CJ. 2015. Geometric sensitivity of patient-specific finite element models of the spine to variability in user-selected anatomical landmarks. Comput Methods Biomech Biomed Eng. 18(6):676–688.
  • Little JP, de Visser H, Pearcy MJ, Adam CJ. 2008. Are coupled rotations in the lumbar spine largely due to the osseo-ligamentous anatomy?–a modeling study. Comput Methods Biomech Biomed Eng. 11(1):95–103.
  • Martelli S, Joukhadar A, Zaffagnini S, Marcacci M, Lavallee S, Champleboux G. 1998. Fiber‐based anterior cruciate ligament model for biomechanical simulations. J Orthop Res. 16(3):379–385.
  • Mirzaei M, Zeinali A, Razmjoo A, Nazemi M. 2009. On prediction of the strength levels and failure patterns of human vertebrae using quantitative computed tomography (QCT)-based finite element method. J Biomech. 42(11):1584–1591.
  • Mustafy T, El-Rich M, Mesfar W, Moglo K. 2014. Investigation of impact loading rate effects on the ligamentous cervical spinal load-partitioning using finite element model of functional spinal unit C2-C3. J Biomech. 47(12):2891–2903.
  • Mustafy T, Moglo K, Adeeb S, El-Rich M. 2016. Injury mechanisms of the ligamentous cervical C2–C3 Functional Spinal Unit to complex loading modes: Finite Element study. J Mech Behav Biomed Mater. 53:384–396.
  • Naserkhaki S, Arjmand N, Shirazi-Adl A, Farahmand F, El-Rich M. 2018. Effects of eight different ligament property datasets on biomechanics of a lumbar L4-L5 finite element model. J Biomech. 70:33–42.
  • Naserkhaki S, El-Rich M. 2017. Sensitivity of lumbar spine response to follower load and flexion moment: finite element study. Comput Methods Biomech Biomed Eng. 20(5):550–557.
  • Naserkhaki S, Jaremko JL, Adeeb S, El-Rich M. 2016a. On the load-sharing along the ligamentous lumbosacral spine in flexed and extended postures: finite element study. J Biomech. 49(6):974–982.
  • Naserkhaki S, Jaremko JL, El-Rich M. 2016b. Effects of inter-individual lumbar spine geometry variation on load-sharing: Geometrically personalized Finite Element study. J Biomech. 49(13):2909–2917.
  • Nikkhoo M, Haghpanahi M, Parnianpour M, Wang J-L. 2013. Dynamic responses of intervertebral disc during static creep and dynamic cyclic loading: a parametric poroelastic finite element analysis. Biomed Eng Appl Basis Commun. 25(01):1350013.
  • Nikkhoo M, Wang J-L, Parnianpour M, El-Rich M, Khalaf K. 2018. Biomechanical response of intact, degenerated and repaired intervertebral discs under impact loading–Ex-vivo and In-Silico investigation. J Biomech. 70:26–32.
  • Noailly J, Lacroix D, Planell JA. 2005. Finite element study of a novel intervertebral disc substitute. Spine. 30(20):2257–2264.
  • Pintar FA, Yoganandan N, Myers T, Elhagediab A, Sances JA. 1992. Biomechanical properties of human lumbar spine ligaments. J Biomech. 25(11):1351–1356.
  • Schmidt H, Heuer F, Drumm J, Klezl Z, Claes L, Wilke H-J. 2007. Application of a calibration method provides more realistic results for a finite element model of a lumbar spinal segment. Clin Biomech. 22(4):377–384.
  • Schultz AB, Warwick DN, Berkson MH, Nachemson AL. 1979. Mechanical properties of human lumbar spine motion segments—Part I: responses in flexion, extension, lateral bending, and torsion. J Biomechan Eng. 101(1):46–52.
  • Sharma M, Langrana N, Rodriguez J. 1998. Modeling of facet articulation as a nonlinear moving contact problem: sensitivity study on lumbar facet response. J Biomechan Eng. 120:118–125.
  • Shirazi-Adl A, Ahmed AM, Shrivastava SC. 1986. Mechanical response of a lumbar motion segment in axial torque alone and combined with compression. Spine. 11(9):914–927.
  • Shirazi-Adl SA, Shrivastava SC, Ahmed AM. 1984. Stress analysis of the lumbar disc-body unit in compression. A three-dimensional nonlinear finite element study. Spine. 9(2):120–134.
  • Weiss JA, Gardiner JC, Ellis BJ, Lujan TJ, Phatak NS. 2005. Three-dimensional finite element modeling of ligaments: technical aspects. Med Eng Phys. 27(10):845–861.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.