331
Views
1
CrossRef citations to date
0
Altmetric
Articles

The pulsatile 3D-Hemodynamics in a doubly afflicted human descending abdominal artery with iliac branching

, , &
Pages 680-699 | Received 26 Jan 2022, Accepted 24 May 2022, Published online: 21 Jun 2022

References

  • Aggarwal S, Qamar A, Sharma V, Sharma A. 2011. Abdominal aortic aneurysm: A comprehensive review. Exp Clin Cardiol. 16(1):11–15.
  • Ahmed SA, Giddens DP. 1983. Flow disturbance measurements through a constricted tube at moderate Reynolds numbers. J Biomech. 16(12):955–963.
  • Alishahi M, Alishahi MM, Emdad H. 2011. Sharif University of Technology Numerical simulation of blood flow in a flexible stenosed abdominal real aorta. Sci Iran 18(6):1297–1305.
  • Aulivola B. 2008. Abdominal aortic aneurysm. Common Surg Dis. 24:97–100.
  • Baskurt OK, Meiselman HJ. 2003. Blood rheology and hemodynamics. Semin Thromb Hemost. 29(5):435–450.
  • Benim AC, Nahavandi A, Assmann A, Schubert D, Feindt P, Suh SH. 2011. Simulation of blood flow in human aorta with emphasis on outlet boundary conditions. Appl Math Model. 35(7):3175–3188.
  • Bodnár T, Sequeira A, Prosi M. 2011. On the shear-thinning and viscoelastic effects of blood flow under various flow rates. Appl Math Comput. 217(11):5055–5067.
  • Boutsianis E, Guala M, Olgac U, Wildermuth S, Hoyer K, Ventikos Y, Poulikakos D. 2009. CFD and PTV steady flow investigation in an anatomically accurate abdominal aortic aneurysm. J Biomech Eng131(1):1–15.
  • Bukač M, Čanić S, Tambača J, Wang Y. 2019. Fluid–structure interaction between pulsatile blood flow and a curved stented coronary artery on a beating heart: A four stent computational study. Comput Methods Appl Mech Eng. 350:679–700.
  • Cardiovascular diseases (CVDs). https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds.) [accessed 2021 Dec 22].
  • Contijoch FJ, Horowitz M, Masutani E, Kligerman S, Hsiao A. 2020. 4D Flow Vorticity Visualization Predicts Regions of Quantitative Flow Inconsistency for Optimal Blood Flow Measurement. Radiol Cardiothorac Imaging2(1):e190054.
  • Doost SN, Zhong L, Su B, Morsi YS. 2016. The numerical analysis of non-Newtonian blood flow in human patient-specific left ventricle. Comput Methods Programs Biomed. 127:232–247.
  • Dwidmuthe PD, Dastane GG, Mathpati CS, Joshi JB. 2021. Study of blood flow in stenosed artery model using computational fluid dynamics and response surface methodology. Can J Chem Eng. 99(S1):820–837.
  • Frauenfelder T, Lotfey M, Boehm T, Wildermuth S. 2006. Computational fluid dynamics: Hemodynamic changes in abdominal aortic aneurysm after stent-graft implantation. Cardiovasc Intervent Radiol. 29(4):613–623.
  • Fry DL. Acute vascular endothelial changes associated with increased blood velocity gradients. http://ahajournals.org. [accessed 2021 Jun 24].
  • Gay M, Zhang L. 2009. Numerical studies of blood flow in healthy, stenosed, and stented carotid arteries. Int J Numer Meth Fluids 61(4):453–472.
  • Harita K, Anburajan M. 2013. Patient specific CAD model of useful carotid artery (CA) for CFD analysis of CA with plaque condition. Int Conf Commun Signal Process. 377–381.
  • Huang RF, Yang TF, Lan YK. 2010. Pulsatile flows and wall-shear stresses in models simulating normal and stenosed aortic arches. Exp Fluids 48(3):497–508.
  • Isselbacher EM. 2005. Thoracic and abdominal aortic aneurysms. Circulation 111(6):816–828.
  • Javadzadegan A, Fakhim B, Behnia M, Behnia M. 2014. Fluid-structure interaction investigation of spiral flow in a model of abdominal aortic aneurysm. Eur J Mech B/Fluids 46:109–117.
  • Jozwik K, Obidowski D. 2010. Numerical simulations of the blood flow through vertebral arteries. J Biomech. 43(2):177–185.
  • Karimi S, Dabagh M, Vasava P, Dadvar M, Dabir B, Jalali P. 2014a. Effect of rheological models on the hemodynamics within human aorta : CFD study on CT image-based geometry. J Nonnewton Fluid Mech. 207:42–52.
  • Karimi S, Dabagh M, Vasava P, Dadvar M, Dabir B, Jalali P. 2014b. Effect of rheological models on the hemodynamics within human aorta: CFD study on CT image-based geometry. J Non-Newton Fluid Mech. 207:42–52.
  • Kelsey LJ, Miller K, Norman PE, Powell JT, Doyle BJ. 2016. The influence of downstream branching arteries on upstream haemodynamics. J Biomech. 49(13):3090–3096.
  • Ku DN, Woodruff GW. 1997. Blood flow in arteries. Annu Rev Fluid Mech. 29(1):399–434.
  • kumar S, Deoghare AB. 2018. Modelling of human abdominal artery for blood flow analysis. Mater Today Proc. 5(5):12877–12885.
  • Mahé G, Kaladji A, Faucheur A, Le Jaquinandi V, Rosa, S, De. 2015. Internal iliac artery stenosis: diagnosis and how to manage it in 2015. Front Cardiovasc Med. 2:33–39.[26664904
  • Nowak M, Melka B, Rojczyk M, Gracka M, Nowak AJ, Golda A, Adamczyk WP, Isaac B, Białecki RA, Ostrowski Z. 2019. The protocol for using elastic wall model in modeling blood flow within human artery. Eur J Mech B/Fluids 77:273–280.
  • Pinho N, Castro CF, António CC, Bettencourt N, Sousa LC, Pinto SIS. 2019. Correlation between geometric parameters of the left coronary artery and hemodynamic descriptors of atherosclerosis: FSI and statistical study. Med Biol Eng Comput. 57(3):715–729.
  • Pinho N, Sousa LC, Castro CF, António CC, Carvalho M, Ferreira W, Ladeiras-Lopes R, Ferreira ND, Braga P, Bettencourt N, et al. 2019. The impact of the right coronary artery geometric parameters on hemodynamic performance. Cardiovasc Eng Technol. 10(2):257–270.
  • Pinto SIS, Romano E, António CC, Sousa LC, Castro CF. 2020. The impact of non-linear viscoelastic property of blood in right coronary arteries hemodynamics — A numerical implementation. Int J Non Linear Mech. 123:103477.
  • Piskin S, Serdar Celebi M. 2013. Analysis of the effects of different pulsatile inlet profiles on the hemodynamical properties of blood flow in patient specific carotid artery with stenosis. Comput Biol Med. 43(6):717–728.
  • Raptis A, Tasso P, Batzalexis K, Gallo D, Xenos M, Morbiducci U, Giannoukas A. 2021. Remodeling effects of carotid artery stenting versus endarterectomy with patch angioplasty in terms of morphology and hemodynamics. Comput Biol Med. 140:105072.
  • Romano E, Sousa LC, António CC, Castro CF, Pinto SIS. 2020a. Non-linear or quasi-linear viscoelastic property of blood for hemodynamic simulations. Adv Struct Mater. 132:127–139.
  • Romano E, Sousa LC, António CC, Castro CF, Pinto SIS. 2020b. WSS descriptors in a patient RCA taking into account the non-linear viscoelasticity of blood. Adv Struct Mater. 132:141–152.
  • Siouffi M, Pelissier R, Farahifar D, Rieu R. 1984. The effect of unsteadiness on the flow through stenoses and bifurcations. J Biomech. 17(5):299–315.
  • Sumner DS. 1988. Buttock claudication from isolated bilateral internal iliac arterial stenoses. J Vasc Surg. 7:446–448.
  • Tabe R, Ghalichi F, Hossainpour S, Ghasemzadeh K. 2011. Numerical simulation of transitional blood flow in large arteries. Iran Conf Biomed Eng. 2011(December):68–71.
  • Taylor CA, Hughes TJR, Zarins CK. 1998. Finite element modeling of blood flow in arteries. Comput Methods Appl Mech Eng. 158(1–2):155–196.
  • Tian FB, Zhu L, Fok PW, Lu XY. 2013. Simulation of a pulsatile non-Newtonian flow past a stenosed 2D artery with atherosclerosis. Comput Biol Med. 43(9):1098–1113.
  • Tripathi J, Vasu B, Bég OA, Gorla RSR, Kameswaran PK. 2021. Computational simulation of rheological blood flow containing hybrid nanoparticles in an inclined catheterized artery with stenotic, aneurysmal and slip effects. Comput Biol Med. 139(July):105009.
  • Tsubota K, Wada S, Kamada H, Kitagawa Y. 2006. A particle method for blood flow simulation, – application to flowing red blood cells and platelets. J Earth Simulator 5(March):2–7.
  • Vasava P. 2011. Application of computational fluid dynamics in modelling blood flow in human thoracic aorta. Lappeenranta University of Technology, Lappeenranta, Finland. ISBN 978-952-265-196-9. UDC: 004.94:611.1:519.62/.64
  • Vasava P, Jalali P, Dabagh M, Kolari PJ. 2012. Finite element modelling of pulsatile blood flow in idealized model of human aortic arch: Study of hypotension and hypertension. Comput Math Methods Med. 2012:861837.
  • Vignon-Clementel IE, Alberto Figueroa C, Jansen KE, Taylor CA. 2006. Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput Methods Appl Mech Eng. 195(29–32):3776–3796.
  • Volpi SL, Antonelli M, Lazzerini B, Marcelloni F, Stefanescu DC. 2009. Segmentation and reconstruction of the lung and the mediastinum volumes in CT images. Int Symp Appl Sci Biomed Commun Technol. 2009:255–259.
  • Vorp D a. 2007. Biomechanics of abdominal aortic aneurysms. J Biomech. 40(9):1887–1902.
  • Wong KKL, Dong J, Tu J. 2012. Numerical study of stenosed carotid bifurcation models based on wall shear stress distribution. In 2012 2nd International Conference on Biomedical Engineering and Technology (Vol 34, pp. 40–44). Singapore: IACSIT Press.
  • Xie X, Wang Y, Zhou H. 2013. Impact of coronary tortuosity on the coronary blood flow: A 3D computational study. J Biomech. 46(11):1833–1841.
  • Yilmaz F, Gundogdu MY. 2008. A critical review on blood flow in large arteries; Relevance to blood rheology, viscosity models, and physiologic conditions. Korea Aust Rheol J. 20(4):197–211.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.