264
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A comparison of intervertebral ligament properties utilized in a thoracic spine functional unit through kinematic evaluation

ORCID Icon, , , &
Pages 1330-1340 | Received 22 Feb 2022, Accepted 16 Aug 2022, Published online: 15 Sep 2022

References

  • Adams MA, Hutton WC, Stott JR. 1980. The resistance to flexion of the lumbar intervertebral joint. Spine (Phila Pa 1976). 5(3):245–253.
  • Aira J, Guleyupoglu B, Jones D, Koya B, Davis M, Gayzik FS. 2019. Validated thoracic vertebrae and costovertebral joints increase biofidelity of a human body model in hub impacts. Traffic Inj Prev. 20(sup2):S1–S6.
  • Chazal J, Tanguy A, Bourges M, Gaurel G, Escande G, Guillot M, Vanneuville G. 1985. Biomechanical properties of spinal ligaments and a histological study of the supraspinal ligament in traction. J Biomech. 18(3):167–176.
  • Cribb M, Anderson S, Martin R, Parasidis S, Martell C, Polanco M, Bawab S, Ringleb S. 2020. Tensile testing of spinal ligaments. Poster session presented at: 2020.American Society of Biomechanics Conference. Aug 4–7 Atlanta, GA.
  • Duprey S, Subit D, Guillemot H, Kent RW. 2010. Biomechanical properties of the costovertebral joint. Med Eng Phys. 32(2):222–227.
  • Gillespie KA, Dickey JP. 2004. Biomechanical role of lumbar spine segments in flexion and extension: Determination using a Parallel Linkage Robot and a Porcine Model. Spine. 29(11):1208–1216.
  • Heuer F, Schmidt H, Klezl Z, Claes L, Wilke HJ. 2007. Stepwise reduction of functional spinal structures increase range of motion and change lordosis angle. J Biomech. 40(2):271–280.
  • Hukins DW, Kirby MC, Sikoryn TA, Aspden RM, Cox AJ. 1990. Comparison of structure, mechanical properties, and functions of lumbar spinal ligaments. Spine (Phila Pa 1976). 15(8):787–795.
  • Jiang HX, Raso JV, Moreau MJ, Russell G, Hill DL, Bagnall KM. 1994. Quantitative morphology of the lateral ligaments of the spine - assessment of their importance in maintaining lateral stability. Spine. 19(23):2676–2682.
  • Kumaresan S, Yoganandan N, Pintar FA. 1998. Finite element modeling approaches of human cervical spine facet joint capsule. J Biomech. 31(4):371–376.
  • Kumaresan S, Yoganandan N, Pintar FA. 1999. Finite element analysis of the cervical spine: a material property sensitivity study. Clin Biomech (Bristol, Avon). 14(1):41–53.
  • Lemosse D, Le Rue O, Diop A, Skalli W, Marec P, Lavaste F. 1998. Characterization of the mechanical behaviour parameters of the costovertebral joint. Eur Spine J. 7(1):16–23.
  • Liebsch C, Wilke HJ. 2020. Rib Presence, Anterior Rib Cage integrity and segmental length affect the stability of the thoracic spine: An in vitro study. Front Bioeng Biotechnol. 8(46):1–10.
  • LittleJ P, Adam CJ. 2011. Effects of surgical joint destabilization on load sharing between ligamentous structures in the thoracic spine-a finite element study. Clin Biomech (Bristol, Avon). 26(9):895–903.
  • Mannen EM, Anderson JT, Arnold PM, Friis EA. 2015. Mechanical contribution of the rib cage in the human cadaveric thoracic spine. Spine (Phila Pa 1976). 40(13):E760–766.
  • Mattucci SF, Moulton JA, Chandrashekar N, Cronin DS. 2012. Strain rate dependent properties of younger human cervical spine ligaments. J Mech Behav Biomed Mater. 10:216–226.
  • Meijer GJ. 2011. Development of a non-fusion scoliosis correction device: numerical modelling of scoliosis correction. Dissertation, Stichting Technologische Wetenschappen: Universiteit of Twente.
  • Mengoni M. 2021. Biomechanical modelling of the facet joints: a review of methods and validation processes in finite element analysis. Biomech Model Mechanobiol. 20(2):389–401.
  • Myklebust JB, Pintar F, Yoganandan N, Cusick JF, Maiman D, Myers TJ, Sances A. Jr. 1988. Tensile strength of spinal ligaments. Spine (Phila Pa 1976). 13(5):526–531.
  • Naserkhaki S, Arjmand N, Shirazi-Adl A, Farahmand F, El-Rich M. 2018. Effects of eight different ligament property datasets on biomechanics of a lumbar L4-L5 finite element model. J Biomech. 70:33–42.
  • Neumann P, Keller TS, Ekstrom L, Perry L, Hansson TH, Spengler DM. 1992. Mechanical properties of the human lumbar anterior longitudinal ligament. J Biomech. 25(10):1185–1194.
  • Newell N, Little JP, Christou A, Adams MA, Adam CJ, Masouros SD. 2017. Biomechanics of the human intervertebral disc: A review of testing techniques and results. J Mech Behav Biomed Mater. 69:420–434.
  • Nolte LP, Panjabi M, Oxland TR. 1990. Biomechanical properties of lumbar spinal ligaments. Clin Implant Mater Adv Biomater. 9:663–668.
  • Pintar FA, Yoganandan N, Myers T, Elhagediab A, Sances A. Jr. 1992. Biomechanical properties of human lumbar spine ligaments. J Biomech. 25(11):1351–1356.
  • Polanco M, Bawab S, Ringleb S, Audette M, St Remy C, Bennett J. 2020. The use of porcine ligament properties as a substitute for human ligaments in a finite element model. Poster session presented at: 2020 American Society of Biomechanics Conference. Aug 4–7; Atlanta, GA.
  • Qiu TX, Teo EC, Lee KK, Ng HW, Yang K. 2003. Validation of T10-T11 finite element model and determination of instantaneous axes of rotations in three anatomical planes. Spine (Phila Pa 1976). 28(24):2694–2699.
  • Rohlmann A, Bauer L, Zander T, Bergmann G, Wilke HJ. 2006. Determination of trunk muscle forces for flexion and extension by using a validated finite element model of the lumbar spine and measured in vivo data. J Biomech. 39(6):981–989.
  • Samdani AF, Bennett JT, Singla AR, Marks MC, Pahys JM, Lonner BS, Miyanji F, ShahSA, Shufflebarger HL, Newton PO, et al. 2015. Do Ponte osteotomies enhance correction in adolescent idiopathic scoliosis? An Analysis of 191 Lenke 1A and 1B Curves. Spine Deform. 3(5):483–488.
  • Schlager B, Niemeyer F, Liebsch C, Galbusera F, Boettinger J, Vogele D, Wilke H-J. 2018. Influence of morphology and material properties on the range of motion of the costovertebral joint – a probabilistic finite element analysis. Comput Methods Biomech Biomed Eng. 21(14):731–739.
  • Schmidt H, Heuer F, Drumm J, Klezl Z, Claes L, Wilke HJ. 2007. Application of a calibration method provides more realistic results for a finite element model of a lumbar spinal segment. Clin Biomech (Bristol, Avon). 22(4):377–384.
  • Schmidt H, Heuer F, Simon U, Kettler A, Rohlmann A, Claes L, Wilke HJ. 2006. Application of a new calibration method for a three-dimensional finite element model of a human lumbar annulus fibrosus. Clin Biomech (Bristol, Avon). 21(4):337–344.
  • Shirazi-Adl A, Ahmed AM, Shrivastava SC. 1986. Mechanical response of a lumbar motion segment in axial torque alone and combined with compression. Spine (Phila Pa 1976). 11(9):914–927.
  • Sikoryn TA, Hukins DW. 1990. Mechanism of failure of the ligamentum flavum of the spine during in vitro tensile tests. J Orthop Res. 8(4):586–591.
  • Stokes IA. 1994. Three-dimensional terminology of spinal deformity. A report presented to the Scoliosis Research Society by the Scoliosis Research Society Working Group on 3-D terminology of spinal deformity. Spine. 19(Supplement):236–248.
  • Troyer KL, Shetye SS, Puttlitz CM. 2012. Experimental characterization and finite element implementation of soft tissue nonlinear viscoelasticity. J Biomech Eng. 134(11):114501.
  • Weiss JA, Gardiner JC, Ellis BJ, Lujan TJ, Phatak NS. 2005. Three-dimensional finite element modeling of ligaments: technical aspects. Med Eng Phys. 27(10):845–861.
  • White AA, Panjabi MM. 1990. Clinical biomechanics of the spine, 2nd ed. Philadelphia, PA: Lippincott, Williams, and Wilkins. p. 9, 2022, 107.
  • Wilke HJ, Grundler S, Ottardi C, Mathew CE, Schlager B, Liebsch C. 2020. In vitro analysis of thoracic spinal motion segment flexibility during stepwise reduction of all functional structures. Eur Spine J. 29(1):179–185.
  • Wilke HJ, Herkommer A, Werner K, Liebsch C. 2017. In vitro analysis of the segmental flexibility of the thoracic spine. PLoS One. 12(5):e0177823.
  • Wilke HJ, Wenger K, Claes L. 1998. Testing criteria for spinal implants-recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J. 7(2):148–154.
  • Yoganandan N, Kumaresan S, Pintar FA. 2000. Geometric and mechanical properties of human cervical spine ligaments. J Biomech Eng. 122(6):623–629.
  • Zander T, Dreischarf M, Timm AK, Baumann WW, Schmidt H. 2017. Impact of material and morphological parameters on the mechanical response of the lumbar spine - A finite element sensitivity study. J Biomech. 53:185–190.
  • Zhong W, Driscoll SJ, Wu M, Wang S, Liu Z, Cha TD, Wood KB, Li G. 2014. In vivo morphological features of human lumbar discs. Medicine (Baltimore). 93(28):e333.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.