155
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Biomechanical analysis of a lacunar-canalicular system under different cyclic displacement loading

, , , , ORCID Icon, , , , , & show all
Pages 1806-1821 | Received 14 Jul 2022, Accepted 01 Nov 2022, Published online: 14 Nov 2022

References

  • Anderson EJ, Knothe Tate ML. 2008. Idealization of pericellular fluid space geometry and dimension results in a profound underprediction of nano-microscale stresses imparted by fluid drag on osteocytes. J Biomech. 41(8):1736–1746.
  • Cabahug-Zuckerman P, Stout RF, Jr., Majeska RJ, Thi MM, Spray DC, Weinbaum S, Schaffler MB. 2018. Potential role for a specialized beta3 integrin-based structure on osteocyte processes in bone mechanosensation. J Orthop Res. 36(2):642–652.
  • Caille N, Thoumine O, Tardy Y, Meister J-J. 2002. Contribution of the nucleus to the mechanical properties of endothelial cells. J Biomech. 35(2):177–187.
  • Charras G, Sahai E. 2014. Physical influences of the extracellular environment on cell migration. Nat Rev Mol Cell Biol. 15(12):813–824.
  • Donahue SW, Jacobs CR, Donahue HJ. 2001. Flow-induced calcium oscillations in rat osteoblasts are age, loading frequency, and shear stress dependent. Am J Physiol Cell Physiol. 281(5):C1635–1641.
  • Ganesh T, Laughrey LE, Niroobakhsh M, Lara-Castillo N. 2020. Multiscale finite element modeling of mechanical strains and fluid flow in osteocyte lacunocanalicular system. Bone. 137:115328.
  • Geoghegan IP, Hoey DA, McNamara LM. 2019. Integrins in osteocyte biology and mechanotransduction. Curr Osteoporos Rep. 17(4):195–206.
  • Han Y, Cowin SC, Schaffler MB, Weinbaum S. 2004. Mechanotransduction and strain amplification in osteocyte cell processes. PNAS USA. 101(47):16689–16694.
  • Jacobs CR, Temiyasathit S, Castillo AB. 2010. Osteocyte mechanobiology and pericellular mechanics. Annu Rev Biomed Eng. 12:369–400.
  • Joukar A, Niroomand-Oscuii H, Ghalichi F. 2016. Numerical simulation of osteocyte cell in response to directional mechanical loadings and mechanotransduction analysis: considering lacunar-canalicular interstitial fluid flow. Comput Methods Programs Biomed. 133:133–141.
  • Klein-Nulend J, Bacabac RG, Bakker AD. 2012. Mechanical loading and how it affects bone cells: the role of the osteocyte cytoskeleton in maintaining our skeleton. Eur Cell Mater. 24:278–291.
  • Kumar R, Tiwari AK, Tripathi D, Shrivas NV, Nizam F. 2019. Canalicular fluid flow induced by loading waveforms: a comparative analysis. J Theor Biol. 471:59–73.
  • McNamara LM, Majeska RJ, Weinbaum S, Friedrich V, Schaffler MB. 2009. Attachment of osteocyte cell processes to the bone matrix. Anat Rec. 292(3):355–363.
  • Nguyen VH, Lemaire T, Naili S. 2010. Poroelastic behaviour of cortical bone under harmonic axial loading: a finite element study at the osteonal scale. Med Eng Phys. 32(4):384–390.
  • Pastrama MI, Scheiner S, Pivonka P, Hellmich C. 2018. A mathematical multiscale model of bone remodeling, accounting for pore space-specific mechanosensation. Bone. 107:208–221.
  • Patel MJ, Chang KH, Sykes MC, Talish R, Rubin C, Jo H. 2009. Low magnitude and high frequency mechanical loading prevents decreased bone formation responses of 2T3 preosteoblasts. J Cell Biochem. 106(2):306–316.
  • Piekarski K, Munro M. 1977. Transport mechanism operating between blood supply and osteocytes in long bones. Nature. 269(5623):80–82.
  • Qin L, Liu W, Cao H, Xiao G. 2020. Molecular mechanosensors in osteocytes. Bone Res. 8:23.
  • Qiu J, Baik AD, Lu XL, Hillman EM, Zhuang Z, Dong C, Guo XE. 2014. A noninvasive approach to determine viscoelastic properties of an individual adherent cell under fluid flow. J Biomech. 47(6):1537–1541.
  • Ren L, Yang P, Wang Z, Zhang J, Ding C, Shang P. 2015. Biomechanical and biophysical environment of bone from the macroscopic to the pericellular and molecular level. J Mech Behav Biomed Mater. 50:104–122.
  • Sehmisch S, Galal R, Kolios L, Tezval M, Dullin C, Zimmer S, Stuermer KM, Stuermer EK. 2009. Effects of low-magnitude, high-frequency mechanical stimulation in the rat osteopenia model. Osteoporos Int. 20(12):1999–2008.
  • Smit TH. 2022. Finite element models of osteocytes and their load-induced activation. Curr Osteoporos Rep. 20(2):127–140.
  • Thi MM, Suadicani SO, Schaffler MB, Weinbaum S, Spray DC. 2013. Mechanosensory responses of osteocytes to physiological forces occur along processes and not cell body and require alphaVbeta3 integrin. Proc Natl Acad Sci USA. 110(52):21012–21017.
  • Vaughan TJ, Mullen CA, Verbruggen SW, McNamara LM. 2015. Bone cell mechanosensation of fluid flow stimulation: a fluid-structure interaction model characterising the role integrin attachments and primary cilia. Biomech Model Mechanobiol. 14(4):703–718.
  • Verbruggen SW, Vaughan TJ, McNamara LM. 2012. Strain amplification in bone mechanobiology: a computational investigation of the in vivo mechanics of osteocytes. J R Soc Interface. 9(75):2735–2744.
  • Verbruggen SW, Vaughan TJ, McNamara LM. 2014. Fluid flow in the osteocyte mechanical environment: a fluid-structure interaction approach. Biomech Model Mechanobiol. 13(1):85–97.
  • Verbruggen SW, Vaughan TJ, McNamara LM. 2016. Mechanisms of osteocyte stimulation in osteoporosis. J Mech Behav Biomed Mater. 62:158–168.
  • Wang L, Dong J, Xian CJ. 2015. Strain amplification analysis of an osteocyte under static and cyclic loading: a finite element study. Biomed Res Int. 2015:376474.
  • Wang L, Dong J, Xian CJ. 2018. Computational investigation on the biomechanical responses of the osteocytes to the compressive stimulus: a poroelastic model. Biomed Res Int. 2018:4071356.
  • Wang Y, Li CX, Dong H, Yu JH, Yan Y, Wu XG, Wang YQ, Li PC, Wei XC, Chen WY. 2022. Mechanosensation of osteocyte with collagen hillocks and primary cilia under pressure and electric field stimulation. Acta Mech Sin. 38(3):1–15.
  • Wang Y, McNamara LM, Schaffler MB, Weinbaum S. 2007. A model for the role of integrins in flow induced mechanotransduction in osteocytes. Proc Natl Acad Sci USA. 104(40):15941–15946.
  • Wittkowske C, Reilly GC, Lacroix D, Perrault CM. 2016. In vitro bone cell models: impact of fluid shear stress on bone formation. Front Bioeng Biotechnol. 4:87.
  • Wu X-G, Zhao T, Wu X-H, Xie J-L, Chen K-J, Guo H-M, Li C-X, Wang Y-Q, Chen W-Y. 2018. Interstitial fluid flow behavior in osteon wall under non-axisymmetric loading: a finite element study. J Mech Med Biol. 18(07):1840007.
  • Wu X, Li C, Chen K, Sun Y, Yu W, Zhang M, Wang Y, Qin Y, Chen W. 2020. Multi-scale mechanotransduction of the poroelastic signals from osteon to osteocyte in bone tissue. Acta Mech Sin. 36(4):964–980.
  • Xie L, Rubin C, Judex S. 2008. Enhancement of the adolescent murine musculoskeletal system using low-level mechanical vibrations. J Appl Physiol. 104(4):1056–1062.
  • Yavropoulou MP, Yovos JG. 2016. The molecular basis of bone mechanotransduction. JMNI. 16(3):221–236.
  • You L, Cowin SC, Schaffler MB, Weinbaum S. 2001. A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix. J Biomech. 34(11):1375–1386.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.