164
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Numerical simulation and in vitro experimental study of thrombus capture efficiency of a new retrievable vena cava filter

, &
Pages 2034-2046 | Received 21 Oct 2022, Accepted 26 Dec 2022, Published online: 10 Jan 2023

References

  • Alain F, Blanche L, Ricco JB, Bonneau M, Reynaud P. 2012. The optional vena tech convertible vena cava filter: experimental study in Sheep. J Cardiovasc Intervent Radiol. 35(5):1181–1187.
  • Anand R, Mina SM, Thomas DM, Joshua DD. 2021. Computational evaluation of inferior vena cava filters through computational fluid dynamics methods. Diagn Interv Radiol. 27(1):116–121.
  • Aycock KI, Campbell RL, Lynch FC, Manning KB, Craven BA. 2016. The importance of hemorheology and patient anatomy on the hemodynamics in the inferior vena cava. Ann Biomed Eng. 44(12):3568–3582.
  • Beier S, Ormiston J, Webster M, Cater J, Norris S, Medrano-Gracia P, Young A, Cowan B. 2016. Hemodynamics in idealized stented coronary arteries: important stent design considerations. Ann Biomed Eng. 44(2):315–329.
  • Burgazli KM, Atmaca N, Mericliler M, Parahuleva M, Erdogan A, Daebritz SH. 2013. Deep vein thrombosis and novel oral anticoagulants: a clinical review. Eur Rev Med Pharmacol Sci. 17(23):3123–3131.
  • Chen H, Hanwei C. 2017. Advances in interventional treatment for lower extremity deep venous thrombus. J Chin J Inter Red (Electron Ed). 5(02):70–73.
  • Christoph A, Alain T, James G, Mark J, Haraldur B, Frank C, William S, Domenic A, William S, Anthony C. 2009. Technical success and safety of retrieval of the G2 filter in a prospective: multicenter study. J Vasc Interv Radiol. 20:1449–1453.
  • Craven BA, Aycock KI, Manning KB. 2018. Steady flow in a patient-averaged inferior vena cava-part II: computational fluid dynamics verification and validation. Cardiovasc Eng Technol. 9(4):654–673.
  • Dria SJ, Eggers MD. 2016. In vitro evaluation of clot capture efficiency of an absorbable vena cava filter. J Vasc Surg Venous Lymphat Disord. 4(4):472–478.
  • Eggers MD, Reitman CA. 2012. In vitro analysis of polymer candidates for the development of absorbable vascular filters. J Vasc Interv Radiol. 23(8):1023–1030.
  • Fang G, Haiquan F, Qingsong H, Zhiguo L. 2017. Comparative analysis on thrombus filtration efficiency for three kinds of convertible vena cava filters. J Med Biomech. 32(03):261–266.
  • Gallagher MB, Aycock KI, Craven BA, Manning KB. 2018. Steady flow in a patient-averaged inferior vena cava-part I: particle image velocimetry measurements at rest and exercise conditions. Cardiovasc Eng Technol. 9(4):641–653.
  • Gao X, Zhang J, Chen B, Yu H, Li J, Zhang S, Feng Z, Ye L, Han J. 2011. A new self-convertible inferior vena cava filter: experimental in-vitro and in-vivo evaluation. J Vasc Interv Radiol. 22(6):829–834.
  • Haiquan F, Hongran Q, Jia L, Yonggang W. 2017. Research on biomechanics properties and hemodynamics perpetual vena cava filter. J Mech Eng. 53(6):187–194.
  • Haiquan F, Juan S, Shiming G, Siyuan C, Yonggang W, Ping C. 2019. A kind of new retrievable vena cava filte. Chinese Invention patent CN201810226758.5
  • Haiquan F, Kun W, Hongran Q, Dong W. 2017. Research on biomechanics properties and hemodynamics performance of the convertible vena cava filter. J Mech Med Biol. 17(7) 1740022.
  • Harlal A, Ojha M, Johnston KW. 2007. Vena cava filter performance based on hemodynamics and reported thrombosis and pulmonary embofism patterns. J Vasc Interv Radiol. 18(1 Pt 1):103–115.
  • Jianchao H, Zhonghua L, Jinye W. 2016. Application of nitinol alloy in vena cava filters. Chin J Med Instrum. 31(04):75–80.
  • Jianlong L, Yunxin Z. 2017. Establishing a new concept in application of inferior vena cava filters. Chin J Gen Surg. 26(6):680–685.
  • Jianping G, Ke X, Gaojun T. 2011. The consensus among Chinese interventional experts on the standard of inferior vena cava filter insertion and retrieval. Chin J Radiol. 20(5):340–344.
  • Jing L, Kun P, Xinyang C, Wenyu F, Aike Q. 2018. Numerical simulation of the effect of virtual stent release pose on the expansion results. J Biomed Eng. 35(02):214–218.
  • Jingying W, Wen H, Yue Z, Fangzhou H, Dong K, Chunhian L. 2020. Hemodynamic analysis of VenaTech convertible vena cava filter using computational fluid dynamics. Front Bioeng Biotechnol. 8:556110.
  • Josep ML, Gerard F, Dolors P, Joan H, Francesc M. 2018. A comparative CFD study of four inferior vena cava filters. Int J Numer Methods Biomed Eng. 34(7):e2990
  • Josep ML, Joan H, Dolors P, Gerard F, Francesc M. 2020. Hemodynamic effects of blood clots trapped by an inferior vena cava filter. Int J Numer Methods Biomed Eng. 36(7):e2990.1–e2990.14.
  • Kenneth IA, Robert LC, Frank CL, Keefe BM, Brent AC. 2017. Computational predictions of the embolus-trapping performance of an IVC filter in patient-specific and idealized IVC geometries. Biomech Model Mechanobiol. 16:1957–1969.
  • Kenneth IA, Robert LC, Keefe BM, Brent AC. 2016. A resolved two-way coupled CFD/6-DOF approach for predicting embolus transport and the embolus-trapping efficiency of IVC Filters. Biomech Model Mechanobiol. 16(3):851–869.
  • Kenneth IA, Robert LC, Keefe BM, Shankar PS, Suzanne MS, Frank CL, Brent AC. 2014. A computational method for predicting inferior vena cava filter performance on a patient specific basis. J Biomech Eng. 136(8):081003.
  • Laborda A, Kuo WT, Ioakeim I, De BI, Malvè M, Lahuerta C, De Gregorio MA. 2015. Respiratory-induced haemodynamic changes: a contributing factor to IVC filter penetration. Cardiovasc Intervent Radiol. 38(5):1192–1197.
  • Mahnken AH, Pfeffer J, Stanzel S, Mossdorf A, Günther RW, Schmitz-Rode T. 2007. In vitro evaluation of optionally retrievable and permanent IVC filters. Invest Radiol. 42(7):529–535.
  • Mingrui L, Jingying W, Wen H, Yue Z, Xue S. 2022. Evaluation of hemodynamic effects of different inferior vena cava filter heads using computational fluid dynamics. Front Bioeng Biotechnol. 10:3389.
  • Nicolás M, Lucea B, Laborda A, Peña E, De Gregorio MA, Martínez MA, Malvè M. 2017. Influence of a commercial antithrombotic filter on the caval blood flow during neutra and valsalva maneuver ASME. J Med Dev. 11(3):031002.
  • Nicolás M, Palero VR, Peña E, Arroyo MP, Martínez MA, Malvè M. 2015. Numerical and experimental study of the fluid flow through a medical device. Int Commun Heat Mass Transfer. 61:170–178.
  • Nicolas MM, Malvé E, Peña MA, Martínez R, Leask R. 2015. In vitro comparison of Gunther Tulip and Celect filters. Testing filtering efficiency and pressure drop. J Biomech. 48(3):504–511.
  • Pellerin O, Di PM, Sanchez O, Meyer G, Sapoval M. 2013. Successful Retrieval of 29 ALN Inferior Vena Cava Filters at a Mean of 25.6 Months After Placement. J Vasc Interv Radiol. 24(2):284–288.
  • Qingsong H, Xiangwen C, Xiaojuan F, Qingxiang Z, Haiquan F. 2018. Comparison of biomechanical properties and hemodynamics of three different vena cava filters. J Shanghai Jiaotong Univ (Sci). 23(6):803–810.
  • Riley JM, Price NS, Saaid HM, Good BC, Aycock KI, Craven BA, Manning KB. 2021. In vitro clot trapping efficiency of the FDA generic inferior vena cava filter in an anatomical model: an experimental fluid–structure interaction benchmark. Cardiovasc Eng Technol. 12(3):339–352.
  • Robinson RA, Herbertson s LH, Das SS, Malinauskas RA, Pritchard WF, Grossman LW. 2013. Limitations of using synthetic blood clots for measuring in vitro clot capture efficiency of inferior vena cava filters. MDER. (12):49–57.
  • Selcuk S. 2021. Investigation of helical strut attached vena cava filter hemodynamic performance. J Eng Res. 10(2):174–183.
  • Singer MA, Henshaw WD, Wang SL. 2009. Computational modeling of blood flow in the TrapEase inferior vena cava filter. J Vasc Interv Radiol. 20(6):799–805.
  • Singer MA, Wang SL, Diachin DP. 2010. Design optimization of vena cava filters: an application to dual filtration devices. J Biomech Eng. 132(10):101006.
  • Siyuan C, Haiquan F, Xiaoqiang L, Jianping G, Xiaotian W, Ping C, Yonggang W. 2019. Hemodynamic analysis of a new retrievable vena cava filter. J Biomed Eng. 36(2):245–253.
  • Stephen LW, Hans AT, John A. 2007. Estimation of trapped thrombus volumes in retrievable inferior vena cava filters: a visual scale. J Vasc Interv Radiol. 18:273–276.
  • Swaminathan TN, Hu HH, Patel AA. 2006. Numerical analysis of the hemodynamics and embolus capture of a greenfield vena cava filter. J Biomech Eng. 128(3):360–370.
  • Torbicki A, Perrier A, Konstantinides S, Agnelli G, Galiè N, Pruszczyk P, Bengel F, Brady AJB, Ferreira D, Janssens U. 2008. Guidelines on the diagnosis and management of acute pulmonary embolism: the task force for the diagnosis and management of acute pulmonary embolism of the european society of cardiology. Eur Heart J. 29(18):2276–2315.
  • Wang SL, Singer MA. 2010. Toward an optimal position for IVC filters: computational modeling of the impact of renal vein inflow. J Vasc Interv Radiol. 21(3):367–374.
  • Wu Y, Wang Y, Yu YJ, Songlin X, Do M. 2015. numerical simulation of the thrombus flow and its influences in blood vessels. J Tianjin Med Univ. 2:109–112.
  • Xuan D, Aike Q. 2016. Application of computational fluid dynamics in clinical treatment of cerebral aneurysms. J Med Biomech. 31(05):461–466.
  • Yajie Y, Yan W, Songlin X. 2015. CFD simulation of the two-phase flow of blood and thrombus flow in blood vessels. J Chem Eng of Chin Univ. 29(04):992–996.
  • Yan BG. 2006. The study of correlation between the process of thrombus formation and density. J Northwest Univ. 3:356–358.
  • Yanbin W, Jie C. 2017. Hemodynamics experimental research of stent coupling system of pulse flow. Life Sci Instrum. 15(02):29–33.
  • Ying C, Zaipin X, Xiaoyan D, Shibo Y, Wenchang T, Yubo F, Yong H, Yubin X. 2021. Effects of reverse deployment of cone‑shaped vena cava filter on improvements in hemodynamicperformance in vena cava. BioMed Eng OnLine. 20(1):10.1186.
  • Zhou D, Spain J, Moon E, Mclennan G, Sands MJ, Wang W. 2012. Retrospective Review of 120 Celect Inferior Vena Cava Filter Retrievals: experience at a Single Institution. J Vasc Interv Radiol. 23(12):1557–1563.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.