126
Views
0
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

Model order reduction techniques to identify submarining risk in a simplified human body model

, , , , & ORCID Icon
Pages 24-35 | Received 31 Aug 2022, Accepted 18 Dec 2022, Published online: 10 Jan 2023

References

  • Assou S, Tourbier Y, Gstalter E, Charrier M, Dessombz O, Jézéquel L. 2021. A reduced model using random forest: application on car crash optimization. SeMA J. 78(2):193–212.
  • Bach C, Duddeck F, Song L. 2019. Fixed-precision randomized low-rank approximation methods for nonlinear model order reduction of large systems. Int J Numer Methods Eng. 119(8):687–711.
  • Bacquaert G, Bach C, Draper D, Peldschus S, Duddeck F. 2020. Positioning human body models for crashworthiness using model order reduction. Comput Methods Biomech Biomed Eng. 23(11):734–743.
  • Bakır GH, Weston J, Schölkopf B. 2004. Learning to find pre-images. Adv Neural Inf Process Syst. 16:449–456.
  • Bird GD. 2020. Linear and nonlinear dimensionality-reduction-based surrogate models for real-time design space exploration of structural responses [Master’s thesis]. Provo, UT, USA: Brigham Young University.
  • Blatman G, Sudret B, Berveiller M. 2007. Quasi random numbers in stochastic finite element analysis. Mech Ind. 8(3):289–297.
  • Borchani H, Varando G, Bielza C, Larranaga P. 2015. A survey on multi-output regression. Wiley Interdiscip Rev: Data Min Knowl Discov. 5(5):216–233.
  • Czech C, Lesjak M, Bach C, Duddeck F. 2022. Data-driven models for crashworthiness optimisation: intrusive and non-intrusive model order reduction techniques. Struct Multidiscip Optim. 65(7):190.
  • DeHaven H. 1942. Mechanical analysis of survival in falls from heights of fifty to one hundred and fifty feet. War Med. 2:586–596.
  • Duddeck F. 2008. Multidisciplinary optimization of car bodies. Struct Multidiscip Optim. 35(4):375–389.
  • Fang J, Sun G, Qiu N, Kim NH, Li Q. 2017. On design optimization for structural crashworthiness and its state of the art. Struct Multidiscip Optim. 55(3):1091–1119.
  • Gayzik FS, Moreno DP, Vavalle NA, Rhyne AC, Stitzel JD. 2011. Development of the global human body models consortium mid-sized male full body model. International Workshop on Human Subjects for Biomechanical Research. Vol. 39. National Highway Traffic Safety Administration Washington, DC, USA.
  • Gstalter E, Assou S, Tourbier Y, De Vuyst F. 2020. Toward new methods for optimization study in automotive industry including recent reduction techniques. Adv Model Simul. 7(1):1–16.
  • Guo M, Hesthaven JS. 2017. Reduced order modeling for nonlinear structural analysis using Gaussian process regression. Comput Methods Appl Mech Eng. 341:807–826.
  • Guo M, Hesthaven JS. 2019. Data-driven reduced order modeling for time-dependent problems. Comput Methods Appl Mech Eng. 345:75–99.
  • Iwamoto M, Kisanuki Y, Watanabe I, Furusu K, Miki K, Hasegawa J. 2002. Development of a finite element model of the total human model for safety (thums) and application to injury reconstruction. In Proceedings of the International IRCOBI Conference. p. 18–20.
  • Jehle J, Lange V, Gerdts M. 2021. Enabling the evidence theory through non-intrusive parametric model order reduction for crash simulations. REC2021.
  • Jehle JS, Lange VA, Gerdts M. 2022. Proposing an uncertainty management framework to implement the evidence theory for vehicle crash applications. ASCE-ASME J Risk Uncert Eng Syst B Mech Eng. 8(2):021204.
  • Kaps A, Czech C, Duddeck F. 2022. A hierarchical kriging approach for multi-fidelity optimization of automotive crashworthiness problems. Struct Multidiscip Optim. 65(4): 114.
  • Kast M, Guo M, Hesthaven JS. 2020. A non-intrusive multifidelity method for the reduced order modeling of nonlinear problems. Comput Methods Appl Mech Eng. 364:112947.
  • Kneifl J, Grunert D, Fehr J. 2021. A nonintrusive nonlinear model reduction method for structural dynamical problems based on machine learning. Int J Numer Methods Eng. 122(17):1–13.
  • Lataniotis C, Marelli S, Sudret B. 2020. Extending classical surrogate modeling to high dimensions through supervised dimensionality reduction: a data-driven approach. Int J Uncertain Quantif. 10(1):55–82.
  • Le Guennec Y, Brunet JP, Daim FZ, Chau M, Tourbier Y. 2018. A parametric and non-intrusive reduced order model of car crash simulation. Comput Methods Appl Mech Eng. 338:186–207.
  • Möser K. 2002. Geschichte des autos. Frankfurt/New York: Campus-Verlag.
  • Poplin GS, McMurry TL, Forman JL, Hartka T, Park G, Shaw G, Shin J, Joo Kim H, Crandall J. 2015. Nature and etiology of hollow-organ abdominal injuries in frontal crashes. Accid Anal Prev. 78:51–57.
  • Ren C, Min H, Ma T, Wang F. 2020. Efficient structure crash topology optimization strategy using a model order reduction method combined with equivalent static loads. Proc Inst Mech Eng D J Automob Eng. 234(7):1897–1911.
  • Santner TJ, Williams BJ, Notz WI, Williams BJ. 2003. The design and analysis of computer experiments. Vol. 1. New York: Springer.
  • Schölkopf B. 2000. The kernel trick for distances. Advances in neural information processing systems. 13:301–307.
  • Schölkopf B, Smola A, Müller KR. 1998. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10(5):1299–1319.
  • Sirovich L. 1987. Turbulence and the dynamics of coherent structures. I. Coherent structures. Q Appl Math. 45(10):561–571.
  • Smola AJ, Mangasarian OL, Schölkopf B. 2002. Sparse kernel feature analysis. In: Classification, automation, and new media. Berlin/Heidelberg: Springer. p. 167–178.
  • Swischuk R, Mainini L, Peherstorfer B, Willcox K. 2019. Projection-based model reduction: formulations for physics-based machine learning. Comput Fluids. 179:704–717.
  • Toyota. 2022. THUMS Model Version 5 - Motor Company. https://www.toyota.co.jp/thums.
  • Van Loan CF. 1976. Generalizing the singular value decomposition. SIAM J Numer Anal. 13(1):76–83.
  • Williams CK, Rasmussen CE. 2006. Gaussian processes for machine learning. Vol. 2. Cambridge, MA: MIT Press.
  • Zhu C, Byrd RH, Lu P, Nocedal J. 1997. Algorithm 778: l-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization. ACM Trans Math Softw (TOMS). 23(4):550–560.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.