1,272
Views
1
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

Computation for biomechanical analysis of aortic aneurysms: the importance of computational grid

, , , &
Pages 994-1010 | Received 06 Feb 2023, Accepted 22 May 2023, Published online: 02 Jun 2023

References

  • Abaqus. 2018. Abaqus 6.14 Documentation. 2018. Dassault Systèmes Simulia Corp. [accessed 2022 June]. https://www.3ds.com/support/documentation/.
  • Alkhatib F, Bourantas GC, Wittek A, Miller K. 2023. Generation of patient-specific structured hexahedral mesh of aortic aneurysm wall. Computational Biomechanics for Medicine - Towards Automation and Robustness of Computations in the Clinic, edited by MP Nash, A Wittek, PMF Nielsen, M Kobielarz, AR Babu and K Miller. Springer International Publishing. (In press)
  • AltairEngineering. 2022. Altair HyperMesh. Altair Engineering. [accessed 2022 September]. https://2022.help.altair.com/2022.1/hwdesktop/hm/topics/chapter_heads/tutorials_r.htm.
  • Babuska I, Szabo B. 1982. On the rates of convergence of the finite element method. Int J Numer Meth Eng. 18(3):323–341.
  • Bathe KJ. 2006. Finite element procedures. New Jersey: Prentice Hall.
  • Benzley SE, Perry E, Merkley K, Clark B, Sjaardama G. 1995. A Comparison of All Hexagonal and All Tetrahedral Finite Element Meshes for Elastic and Elasto-plastic Analysis. 4th International Meshing Roundtable; October 1995. Albuquerque, N.M. USA. Sandia National Laboratories. https://coreform.com/papers/hex_tet_comparison.pdf
  • Biehler J, Gee MW, Wall WA. 2015. Towards efficient uncertainty quantification in complex and large-scale biomechanical problems based on a Bayesian multi-fidelity scheme. Biomech Model Mechanobiol. 14(3):489–513.
  • Bonet J, Burton AJ. 1998. A simple average nodal pressure tetrahedral element for incompressible and nearly incompressible dynamic explicit applications. Commun Numer Meth Eng. 14(5):437–449.
  • Cifuentes AO, Kalbag A. 1992. A performance study of tetrahedral and hexahedral elements in 3-D finite element structural analysis. Finite Elem Anal Des. 12(3–4):313–318.
  • Conlisk N, Geers AJ, McBride OMB, Newby DE, Hoskins PR. 2016. Patient-specific modelling of abdominal aortic aneurysms: the influence of wall thickness on predicted clinical outcomes. Med Eng Phys. 38(6):526–537.
  • Cubit 2021. Cubit user documentation by Sandia. [accessed 2022 July]. https://www.sandia.gov/files/cubit/15.4/help_manual/WebHelp/item/set-up.htm.
  • Cywinski J. 1980. The essentials in pressure monitoring. Dordrecht: Springer. (The Tardieu Series).
  • Darling R, Messina C, Brewster D, Ottinger L. 1977. Autopsy study of unoperated abdominal aortic aneurysms. The case for early resection. Circulation. 56(3 Suppl):II161–164.
  • Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, et al. 2012. 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging. 30(9):1323–1341.
  • Fillinger MF, Marra SP, Raghavan ML, Kennedy FE. 2003. Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter. J Vasc Surg. 37(4):724–732.
  • Fillinger MF, Raghavan ML, Marra SP, Cronenwett JL, Kennedy FE. 2002. In vivo analysis of mechanical wall stress and abdominal aortic aneurysm rupture risk. J Vasc Surg. 36(3):589–597.
  • Fung YC. 1991. What are the residual stresses doing in our blood vessels? Ann Biomed Eng. 19(3):237–249.
  • Gasser TC, Auer M, Labruto F, Swedenborg J, Roy J. 2010. Biomechanical rupture risk assessment of abdominal aortic aneurysms: model complexity versus predictability of finite element simulations. Eur J Vasc Endovasc Surg. 40(2):176–185.
  • Gasser TC, Nchimi A, Swedenborg J, Roy J, Sakalihasan N, Böckler D, Hyhlik-Dürr A. 2014. A novel strategy to translate the biomechanical rupture risk of abdominal aortic aneurysms to their equivalent diameter risk: method and retrospective validation. Eur J Vasc Endovasc Surg. 47(3):288–295.
  • Geuzaine C, Remacle J-F. 2009. Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Meth Eng. 79(11):1309–1331.
  • Holzapfel GA, Gasser TC, Ogden RW. 2000. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast Phys Sci Solids. 61(1):1–48.
  • Johnston KW, Rutherford RB, Tilson MD, Shah DM, Hollier L, Stanley JC. 1991. Suggested standards for reporting on arterial aneurysms. J Vasc Surg. 13(3):452–458.
  • Joldes GR, Miller K, Wittek A, Doyle B. 2016. A simple, effective and clinically applicable method to compute abdominal aortic aneurysm wall stress. J Mech Behav Biomed Mater. 58:139–148.
  • Joldes GR, Miller K, Wittek A, Forsythe RO, Newby DE, Doyle BJ. 2017. BioPARR: a software system for estimating the rupture potential index for abdominal aortic aneurysms. Sci Rep. 7(1):4641.
  • Joldes GR, Noble C, Polzer S, Taylor ZA, Wittek A, Miller K. 2018. A simple method of incorporating the effect of the uniform stress hypothesis in arterial wall stress computations. Acta Bioeng Biomech. 20(3):59–67.
  • Joldes GR, Wittek A, Miller K. 2009. Non-locking tetrahedral finite element for surgical simulation. Commun Numer Methods Eng. 25(7):827–836.
  • Knupp PM. 2001. Hexahedral and tetrahedral mesh untangling. Eng Comput. 17(3):261–268.
  • Kwaśniewski L. 2013. Application of grid convergence index in FE computation. Bull Pol Acad Sci: Tech Sci. 61(1):123–128.
  • Lesage D, Angelini ED, Bloch I, Funka-Lea G. 2009. A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes. Med Image Anal. 13(6):819–845.
  • Liddelow M, Alkhatib F, Wittek A, Miller K. 2023. The Effects of the Spine on the Analysis of Peak Wall Stress in Abdominal Aortic Aneurysms. Computational Biomechanics for Medicine - Towards Automation and Robustness of Computations in the Clinic, edited by MP Nash, A Wittek, PMF Nielsen, M Kobielarz, AR Babu and K Miller. Springer International Publishing. (In press)
  • Malkus DS, Hughes TJR. 1978. Mixed finite element methods—reduced and selective integration techniques: a unification of concepts. Comput Methods Appl Mech Eng. 15(1):63–81.
  • Mann HB, Whitney DR. 1947. On a test of whether one of two random variables is stochastically larger than the other. Ann Math Statist. 18(1):50–60.
  • Miller K, Joldes GR, Qian J, Patel AP, Jung MS , Tavner ACR, Wittek A. 2019. Maximum Principal AAA Wall Stress Is Proportional to Wall Thickness. Computational Biomechanics for Medicine - Measurements, Models, and Predictions, edited by Nielsen PMF, Wittek A, Miller K, Doyle B, Joldes GR, Nash MP. Cham: Springer International Publishing.
  • Miller K, Mufty H, Catlin A, Rogers C, Saunders B, Sciarrone R, Fourneau I, Meuris B, Tavner A, Joldes GR, et al. 2020. Is there a relationship between stress in walls of abdominal aortic aneurysm and symptoms? J Surg Res. 252:37–46.
  • Naylor DJ. 1974. Stresses in nearly incompressible materials by finite elements with application to the calculation of excess pore pressures. Int J Numer Meth Eng. 8(3):443–460.
  • Parthasarathy VN, Graichen CM, Hathaway AF. 1994. A comparison of tetrahedron quality measures. Finite Elem Anal Des. 15(3):255–261.
  • Polzer S, Bursa J, Gasser TC, Staffa R, Vlachovsky R. 2013. A numerical implementation to predict residual strains from the homogeneous stress hypothesis with application to abdominal aortic aneurysms. Ann Biomed Eng. 41(7):1516–1527.
  • Polzer S, Gasser TC, Vlachovský R, Kubíček L, Lambert L, Man V, Novák K, Slažanský M, Burša J, Staffa R. 2020. Biomechanical indices are more sensitive than diameter in predicting rupture of asymptomatic abdominal aortic aneurysms. J Vasc Surg. 71(2):617–626.e616.
  • Raghavan ML, Ma B, Fillinger MF. 2006. Non-invasive determination of zero-pressure geometry of arterial aneurysms. Ann Biomed Eng. 34(9):1414–1419.
  • Raut SS, Liu P, Finol EA. 2015. An approach for patient-specific multi-domain vascular mesh generation featuring spatially varying wall thickness modeling. J Biomech. 48(10):1972–1981.
  • Rice JA. 2006. Mathematical statistics and data analysis. 3rd ed. Berkeley: University of California.
  • Roache PJ. 1994. Perspective: a method for uniform reporting of grid refinement studies. ASME J Fluids Eng. 116(3):405–413.
  • Ruggiero A, D’Amato R, Affatato S. 2019. Comparison of meshing strategies in THR finite element modelling. Materials (Basel). 12(14):2332.
  • Sandhu RS, Singh KJ. 1978. Reduced integration for improved accuracy of finite element approximations. Comput Methods Appl Mech Eng. 14(1):23–37.
  • Schwer LE. 2008. Is your mesh refined enough? Estimating discretization error using GCI. 7th LS-DYNA Anwender Forum. 1(1):45–54.
  • Singh TP, Moxon JV, Iyer V, Gasser TC, Jenkins J, Golledge J. 2020. Comparison of peak wall stress and peak wall rupture index in ruptured and asymptomatic intact abdominal aortic aneurysms. BJS.
  • Slater JW. 2021. Examining spatial (grid) convergence. [accessed 2022 October]. https://www.grc.nasa.gov/www/wind/valid/tutorial/spatconv.html.
  • Tadepalli SC, Erdemir A, Cavanagh PR. 2011. Comparison of hexahedral and tetrahedral elements in finite element analysis of the foot and footwear. J Biomech. 44(12):2337–2343.
  • Upchurch GR, Schaub TA. 2006. Abdominal aortic aneurysm. Am Acad Family Phys. 73(7):1198–1204.
  • Vorp DA. 2007. Biomechanics of abdominal aortic aneurysm. J Biomech. 40(9):1887–1902.
  • Vorp DA, Mandarino WA, Webster MW, Gorcsan J. 1996. Potential influence of intraluminal thrombus on abdominal aortic aneurysm as assessed by a new non-invasive method. Cardiovasc Surg. 4(6):732–739.
  • Wittek A, Alkhatib F, Vitásek R, Polzer S, Miller K. 2022. On stress in abdominal aortic aneurysm: linear versus non-linear analysis and aneurysm rupture risk. Int J Numer Method Biomed Eng. 38(2):e3554.
  • Wittek A, Grosland NM, Joldes GR, Magnotta V, Miller K. 2016. From finite element meshes to clouds of points: a review of methods for generation of computational biomechanics models for patient-specific applications. Ann Biomed Eng. 44(1):3–15.
  • Yang KH. 2018. Chapter 3 – isoparametric formulation and mesh quality. In: Yang K-H, editor. Basic finite element method as applied to injury biomechanics. London: Academic Press; p. 111–149.
  • Zelaya JE, Goenezen S, Dargon PT, Azarbal A-F, Rugonyi S. 2014. Improving the efficiency of abdominal aortic aneurysm wall stress computations. PLoS One. 9(7):e101353.
  • Zhang YJ. 2018. Image-based quadrilateral and hexahedral meshing. Geometric modeling and mesh generation from scanned images. p. 193–228.
  • Zienkiewicz OC, Taylor RL, Too JM. 1971. Reduced integration technique in general analysis of plates and shells. Int J Numer Meth Eng. 3(2):275–290.