95
Views
2
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

Design computed torque control for Stewart platform with uncertainty to the rehabilitation of patients with leg disabilities

ORCID Icon & ORCID Icon
Pages 1028-1041 | Received 24 Jun 2022, Accepted 31 May 2023, Published online: 14 Jun 2023

References

  • Bonev I. 2003. The true origins of parallel robots. ParalleMIC.
  • Breitner MH, Denk G, Rentrop P. 2008. Applied mathematics inspired by Roland Bulirsch, 1st ed. Berlin. Springer.
  • Cameron RH, Martin WT. 1947. The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals. Ann Math. 48(2):385–392. doi:10.2307/1969178.
  • Codourey A. 1998. Dynamic modeling of parallel robots for computed-torque control implementation. Int J Rob Res. 17(12):1325–1336. doi:10.1177/027836499801701205.
  • Dong M, Zhou Y, Li J, Rong X, Fan W, Zhou X, Kong Y. 2021. State of the art in parallel ankle rehabilitation robot: a systematic review. J Neuro Eng Rehabil. 18(1):1–15. doi:10.1186/s12984-021-00845-z.
  • Fumagalli A, Masarati P. 2009. Real-time inverse dynamics control of parallel manipulators using general-purpose multibody software. Multibody Syst Dyn. 22(1):47–68. doi:10.1007/s11044-009-9153-7.
  • Karim A. 1989. Adaptive computed torque control of robot manipulators. CSU.
  • Khalil W, Guegan S. 2004. Inverse and direct dynamic modeling of Gough-Stewart robots. IEEE Trans Robot. 20(4):754–762. doi:10.1109/TRO.2004.829473.
  • Kingsley C. 2015. Efficient computation of inverse dynamics for computed torque control applications of fully actuated complex multibody systems [master’s thesis]. Tucson (AZ): The University of Arizona.
  • Lammerts I. 1993. Adaptive computed reference computed torque control of flexible manipulators. Technische Universiteit Eindhoven.
  • Nagy Z. 2003. Recent advances in the optimal control of batch processes. Recent Res Dev Chem Eng. 5(1).
  • Oftadeh R, Aref MM, Taghirad HD. 2010. Explicit dynamics formulation of Stewart-Gough platform: a Newton-Euler approach. IEEE/RSJ International Conference on Intelligent Robots and Systems; IEEE.
  • Poursina M. 2016. Extended divide-and-conquer algorithm for uncertainty analysis of multibody systems in polynomial chaos expansion framework. J Comput Nonlinear Dyn. 11(3). doi:10.1115/1.4031573.
  • Rahmati SM, Karimi A. 2022. The design and control of a footplate-based gait robo-assisted system for lower limb actuator. Machines. 10(7):546–546. doi:10.3390/machines10070546.
  • Sabet S, Poursina M. 2017. Computed torque control of fully-actuated nondeterministic multibody systems. Multibody Syst Dyn. 41(4):347–365. doi:10.1007/s11044-017-9577-4.
  • Sabet S, Dabiri A, Armstrong DG, Poursina M. 2017. Computed torque control of the Stewart platform with uncertainty for lower extremity robotic rehabilitation. American Control Conference (ACC); IEEE.
  • Sabet S, Poursina M. 2015. Forward kinematic analysis of non-deterministic articulated multibody systems with kinematically closed-loops in polynomial chaos expansion scheme. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference; American Society of Mechanical Engineers.
  • Sandu A, Sandu C, Ahmadian M. 2006. Modeling multibody systems with uncertainties. Part I: theoretical and computational aspects. Multibody Syst Dyn. 15(4):369–391. doi:10.1007/s11044-006-9007-5.
  • Shakti D, Mathew L, Kumar N, Kataria C. 2018. Effectiveness of robo-assisted lower limb rehabilitation for spastic patients: a systematic review. Elsevier.
  • Song Z, Yi J, Zhao D, Li X. 2005. A computed torque controller for uncertain robotic manipulator systems: fuzzy approach. Fuzzy Sets Syst. 154(2):208–226. doi:10.1016/j.fss.2005.03.007.
  • Stewert D. 1966. A platform with 6 degrees of freedom. 371–386.
  • Xiu D, Karniadakis GE. 2002. The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput. 24(2):619–644. doi:10.1137/S1064827501387826.
  • Yu X, Li B, He W, Feng Y, Cheng L, Silvestre C. 2022. Adaptive-constrained impedance control for human–robot co-transportation. IEEE Trans Cybern. 52(12):13237–13249. doi:10.1109/TCYB.2021.3107357.
  • Zuo S, Li J, Dong M, Zhou X, Fan W, Kong Y. 2020. Design and performance evaluation of a novel wearable parallel mechanism for ankle rehabilitation. Front Neurorobot. 14:9–9. doi:10.3389/fnbot.2020.00009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.