131
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Comparison between guide plate navigation and virtual fixtures in robot-assisted osteotomy

, , , , , , & show all
Received 17 May 2023, Accepted 27 Jul 2023, Published online: 07 Aug 2023

References

  • Banerjee S, Cherian JJ, Elmallah RK, Pierce TP, Jauregui JJ, Mont MA. 2016. Robot-assisted total hip arthroplasty. Expert Rev Med Devices. 13(1):47–56. doi:10.1586/17434440.2016.1124018.
  • Bettini A, Marayong P, Lang S, Okamura AM, Hager GD. 2004. Vision-assisted control for manipulation using virtual fixtures. IEEE Trans Rob. 20(6):953–966. doi:10.1109/TRO.2004.829483.
  • Bischof B, Gluck T, Bock M, Kugi A. 2018. A path/surface following control approach to generate virtual fixtures. IEEE Trans Rob. 34(6):1577–1592. doi:10.1109/TRO.2018.2861913.
  • Carr AJ, Robertsson O, Graves S, Price AJ, Arden NK, Judge A, Beard DJ. 2012. Knee replacement. Lancet. 379(9823):1331–1340. doi:10.1016/S0140-6736(11)60752-6.
  • Dai X, Zhang Y, Jiang J, Li B. 2021. Image-guided robots for low dose rate prostate brachytherapy: perspectives on safety in design and use. Int J Med Rob. 17(3):e2239. doi:10.1002/rcs.2239.
  • Dong XP, Zhang YW, Wang Z, Deng L. 2020. Clinical application of three-dimensional printing assisted percutaneous guide plate in minimally invasive reduction and internal fixation of tibial plateau fracture. Asian J Surg. 43(9):921–923. doi:10.1016/j.asjsur.2020.04.020.
  • Duan X, Tian H, Li C, Han Z, Cui T, Shi Q, Wen H, Wang J. 2021. Virtual-fixture based drilling control for robot-assisted craniotomy: learning from demonstration. IEEE Rob Autom Lett. 6(2):2327–2334. doi:10.1109/LRA.2021.3061388.
  • Funda J, Taylor RH, Eldridge B, Gomory S, Gruben KG. 1996. Constrained cartesian motion control for teleoperated surgical robots. IEEE Trans Rob Autom. 12(3):453–465.
  • Hampp EL, Chughtai M, Scholl LY, Sodhi N, Bhowmik-Stoker M, Jacofsky DJ, Mont MA. 2019. Robotic-arm assisted total knee arthroplasty demonstrated greater accuracy and precision to plan compared with manual techniques. J Knee Surg. 32(3):239–250. doi:10.1055/s-0038-1641729.
  • Hogan N. 1985. Impedance control: an approach to manipulation: part III-applications. J Dyn Syst Meas Control Trans ASME. 107(1):17–24. doi:10.1115/1.3140701.
  • Iorio R, Bolle G, Conteduca F, Valeo L, Conteduca J, Mazza D, Ferretti A. 2013. Accuracy of manual instrumentation of tibial cutting guide in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 21(10):2296–2300. doi:10.1007/s00167-012-2005-7.
  • James TP, Mc Gonigle OP, Hasan IS, Smith EL. 2013. Adjustable slot cutting guide for improved accuracy during bone resection in total knee arthroplasty. J Med Devices. 7(4):1–6. doi:10.1115/1.4025341.
  • Karade V, Ravi B, Agarwal M. 2012. Extramedullary versus intramedullary tibial cutting guides in megaprosthetic total knee replacement. J Orthop Surg Res. 7(1):33. doi:10.1186/1749-799X-7-33.
  • Keemink AQL, van der Kooij H, Stienen AHA. 2018. Admittance control for physical human–robot interaction. Int J Rob Res. 37(11):1421–1444. doi:10.1177/0278364918768950.
  • Kreuzer S, Brar A, Campanelli V. 2022. Dimensional accuracy of TKA cut surfaces with an active robotic system. Comput Assist Surg (Abingdon). 27(1):41–49. doi:10.1080/24699322.2022.2080116.
  • Li M, Ishii M, Taylor RH. 2007. Spatial motion constraints using virtual fixtures generated by anatomy. IEEE Trans Rob. 23(1):4–19. doi:10.1109/TRO.2006.886838.
  • Liu S, Liu J, Xu J, Ding X, Lu T, Chen K. 2017. Preoperative surgical planning for robot-assisted liver tumour ablation therapy based on collision-free reachable workspaces. Int J Rob Autom. 32(5):440–457. doi:10.2316/Journal.206.2017.5.206-4607.
  • Luo Y, Li Z, Jiang S, Hu L, Liu W, Li W. 2020. A novel fluoroscopy-based robot system for pedicle screw fixation surgery. Int J Med Rob. 16(6):1–8. doi:10.1002/rcs.2171.
  • Matziolis G, Krocker D, Weiss U, Tohtz S, Perka C. 2007. A prospective, randomized study of computer-assisted and conventional total knee arthroplasty. J Bone Joint Surg Am. 89(2):236–243. doi:10.2106/jbjs.f.00386.
  • Moccia S, Foti S, Routray A, Prudente F, Perin A, Sekula RF, Mattos LS, Balzer JR, Fellows-Mayle W, De Momi E, et al. 2018. Toward improving safety in neurosurgery with an active handheld instrument. Ann Biomed Eng. 46(10):1450–1464. doi:10.1007/s10439-018-2091-x.
  • Ng VY, DeClaire JH, Berend KR, Gulick BC, Lombardi AV. 2012. Improved accuracy of alignment with patient-specific positioning guides compared with manual instrumentation in TKA. Clin Orthop Relat Res. 470(1):99–107. doi:10.1007/s11999-011-1996-6.
  • Nunley RM, Ellison BS, Ruh EL, Williams BM, Foreman K, Ford AD, Barrack RL. 2012. Are patient-specific cutting blocks cost-effective for total knee arthroplasty? Clin Orthop Relat Res. 470(3):889–894. doi:10.1007/s11999-011-2221-3.
  • Park JW, Kang HG, Lim KM, Park DW, Kim JH, Kim HS. 2018. Bone tumor resection guide using three-dimensional printing for limb salvage surgery. J Surg Oncol. 118(6):898–905. doi:10.1002/jso.25236.
  • Qiu H, Pan B, Fu Y, Ai Y. 2019. Surgical instruments motion safety constraint based on haptic virtual fixture. In: Proceedings of the 2019 IEEE International Conference on Mechatronics and Automation (ICMA); p. 2267–2272. doi:10.1109/ICMA.2019.8816535.
  • Sires JD, Craik JD, Wilson CJ. 2021. Accuracy of bone resection in MAKO total knee robotic-assisted surgery. J Knee Surg. 34(7):745–748. doi:10.1055/s-0039-1700570.
  • Sun L, Liu H, Xu C, Yan B, Yue H, Wang P. 2020. 3D printed navigation template-guided minimally invasive percutaneous plate osteosynthesis for distal femoral fracture: a retrospective cohort study. Injury. 51(2):436–442. doi:10.1016/j.injury.2019.10.086.
  • Sutherland G, Maddahi Y, Gan L, Lama S, Zareinia K. 2015. Robotics in the neurosurgical treatment of glioma. Surg Neurol Int. 6(2):1. doi:10.4103/2152-7806.151321.
  • van Steenbergen TRF, van der Geest ICM, Janssen D, Rovers MM, Fütterer JJ. 2019. Feasibility study of intraoperative cone-beam CT navigation for benign bone tumour surgery. Int J Med Robot. 15(3):e1993. doi:10.1002/rcs.1993.
  • Vitrani MA, Poquet C, Morel G. 2017. Applying virtual fixtures to the distal end of a minimally invasive surgery instrument. IEEE Trans Rob. 33(1):114–123. doi:10.1109/TRO.2016.2623332.
  • Yamada K, Imaizumi T, Takada N. 2003. Linkage guide for rotational alignment during total knee arthroplasty. J Orthop Sci. 8(5):643–647. doi:10.1007/s00776-003-0686-y.
  • Yang Q, Feng S, Song J, Cheng C, Liang C, Wang Y. 2022. Computer-aided automatic planning and biomechanical analysis of a novel arc screw for pelvic fracture internal fixation. Comput Methods Programs Biomed. 220:106810. doi:10.1016/j.cmpb.2022.106810.
  • Yu Y, Zhang WB, Liu XJ, Guo CB, Yu GY, Peng X. 2020. Selection of guiding plate combined with surgical navigation for microsurgical mandibular reconstruction. J Craniofac Surg. 31(4):960–965. doi:10.1097/SCS.0000000000006295.
  • Yuan X, Xuan M, Tian W, Long J. 2016. Application of digital surgical guides in mandibular resection and reconstruction with fibula flaps. Int J Oral Maxillofac Surg. 45(11):1406–1409. doi:10.1016/j.ijom.2016.06.022.
  • Zhang GL, Zhang YZ, Zhang XS, Gao L. 2021. Preliminary research of bi-planar fluoroscopic positioning robot assisted core decompression for osteonecrosis of the femoral head. Asian J Surg. 45(1):529–530.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.