59
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Authentication with a one-dimensional CNN model using EEG-based brain-computer interface

&
Received 28 Jan 2024, Accepted 10 May 2024, Published online: 20 May 2024

References

  • Abdelkader G, Adda A, Naima HS. 2020. Chao athentication and ciphering approach to secure mobile networks. Int J Netw Commun. 10(1):20–32. doi: 10.5923/j.ijnc.20201001.03.
  • Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adeli H. 2018. Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput Biol Med. 100:270–278. doi: 10.1016/j.compbiomed.2017.09.017.
  • Bai X. 2010. Real-time control of wheelchairs with brain waves. Robot Technol Appl. 2:10–12.
  • Baig MZ, Aslam N, Shum HPH, Zhang L. 2017. Differential evolution algorithm as a tool for optimal feature subset selection in motor imagery EEG. Expert Syst Appl. 90:184–195. doi: 10.1016/j.eswa.2017.07.033.
  • Bak S, Jeong J. 2023. User biometric identification methodology via eeg-based motor imagery signals. IEEE Access. 11:41303–41314. doi: 10.1109/ACCESS.2023.3268551.
  • Bakhshali MA, Ebrahimi-Moghadam A, Khademi M, Moghimi S. 2019. Coherence-based correntropy spectral density: a novel coherence measure for functional connectivity of EEG signals. Measurement. 140:354–364. doi: 10.1016/j.measurement.2019.04.023.
  • Benomar M, Cao S, Vishwanath M, Vo K, Cao H. 2022. Investigation of EEG-based biometric identification using state-of-the-art neural architectures on a real-time raspberry Pi-based system. Sensors. 22(23):9547. doi: 10.3390/s22239547.
  • Caldwell JA, Prazinko B, Caldwell JL. 2003. Body posture affects electroencephalographic activity and psychomotor vigilance task performance in sleep-deprived subjects. Clin Neurophysiol. 114(1):23–31. doi: 10.1016/s1388-2457(02)00283-3.
  • Chang Z, Zhang C, Li C. 2022. Motor imagery EEG classification based on transfer learning and multi-scale convolution network. Micromachines (Basel). 13(6):927. doi: 10.3390/mi13060927.
  • Chen G. 2014. Automatic EEG seizure detection using dual-tree complex wavelet-Fourier features. Expert Syst Appl. 41(5):2391–2394. doi: 10.1016/j.eswa.2013.09.037.
  • Chen T, Ju S, Ren F, Fan M, Gu Y. 2020. EEG emotion recognition model based on the LIBSVM classifier. Measurement. 164:108047. doi: 10.1016/j.measurement.2020.108047.
  • Gauba H, Kumar P, Roy PP, Singh P, Dogra DP, Raman B. 2017. Prediction of advertisement preference by fusing EEG response and sentiment analysis. Neural Netw. 92:77–88. doi: 10.1016/j.neunet.2017.01.013.
  • Ghazli A, Alipacha A, Said NH. 2021. Evolutionary approach to secure mobile telecommunication networks. IJEECS. 24(1):357. doi: 10.11591/ijeecs.v24.i1.pp357-366.
  • Ghazli A, Said NH, Pacha AA. 2017. Secure authentication approach based new mobility management schemes for mobile communication. J Inf Process Syst. doi: 10.3745/JIPS.03.0064.
  • Gorur K, Olmez E, Ozer Z, Cetin O. 2023. EEG-driven biometric authentication for investigation of Fourier synchrosqueezed transform-ICA robust framework. Arab J Sci Eng. 48(8):10901–10923. doi: 10.1007/s13369-023-07798-6.
  • Graves A, Mohamed A, Hinton G., 2013. Speech recognition with deep recurrent neural networks. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. doi: 10.1109/icassp.2013.6638947.
  • Hashim N, Ali A, Mohd-Isa W-N. 2018. Word-based classification of imagined speech using EEG. Lectu Notes Electr Eng. 488:195–204. doi: 10.1007/978-981-10-8276-4_19.
  • Heng H-M, Lu M-K, Chou L-W, Meng N-H, Huang H-C, Hamada M, Tsai C-H, Chen J-C. 2020. Changes in balance, gait and electroencephalography oscillations after robot-assisted gait training: an exploratory study in people with chronic stroke. Brain Sci. 10(11):821. doi: 10.3390/brainsci10110821.
  • Ingolfsson TM, Hersche M, Wang X, Kobayashi N, Cavigelli L, Benini L. 2020. EEG-TCNet: an Accurate Temporal Convolutional Network for Embedded Motor-Imagery Brain–Machine Interfaces. 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Oct. 2020, doi: 10.1109/SMC42975.2020.9283028.
  • Jin J. 2014. Flattened convolutional neural networks for feedforward acceleration, arXiv.org, Dec. 17 https://arxiv.org/abs/1412.5474.
  • Kansal S, Garg D, Upadhyay A, Mittal S, Talwar GS. 2023. A novel deep learning approach to predict subject arm movements from EEG-based signals. Neural Comput Appl. 35(16):11669–11679. doi: 10.1007/s00521-023-08310-9.
  • Kaur B, Singh D, Roy PP. 2016. A novel framework of EEG-based user identification by analyzing music-listening behavior. Multimed Tools Appl. 76(24):25581–25602. doi: 10.1007/s11042-016-4232-2.
  • Krizhevsky A, Sutskever I, Hinton GE. 2017. ImageNet classification with deep convolutional neural networks. Commun ACM. 60(6):84–90. doi: 10.1145/3065386.
  • Kwon S, Mustaqeem, 1D-CNN: speech emotion recognition system using a stacked network with dilated CNN features, Comput Mater Continua, 67, 3, 4039–4059, 2021, doi: 10.32604/cmc.2021.015070.
  • Lawhern VJ, Solon AJ, Waytowich NR, Gordon SM, Hung CP, Lance BJ. 2018. EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces. J Neural Eng. 15(5):056013. doi: 10.1088/1741-2552/aace8c.
  • LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature. 521(7553):436–444. doi: 10.1038/nature14539.
  • Li Y, Guo L, Liu Y, Liu J, Meng F. 2021. A temporal-spectral-based squeeze-and- excitation feature fusion network for motor imagery EEG decoding. IEEE Trans Neural Syst Rehabil Eng. 29:1534–1545. doi: 10.1109/tnsre.2021.3099908.
  • Li Y, Long J, Yu T, Yu Z, Wang C, Zhang H, Guan C. 2010. An EEG-based BCI system for 2-D cursor control by combining mu/beta rhythm and P300 potential. IEEE Trans Biomed Eng. 57(10):2495–2505. doi: 10.1109/tbme.2010.2055564.
  • Liu F, Liu C, Zhao L, Zhang X, Wu X, Xu X, Liu Y, Ma C, Wei S, He Z, et al. 2018. An open access database for evaluating the algorithms of electrocardiogram rhythm and morphology abnormality detection. J Med Imaging Hlth Inform. 8(7):1368–1373. doi: 10.1166/jmihi.2018.2442.
  • Lu S, Lu Z, Phillips P, Wang S, Zhang Y. 2018. Pathological brain detection in magnetic resonance imaging using combined features and improved extreme learning machines. J Med Imaging Health Inform. 8(7):1486–1490. doi: 10.1166/jmihi.2018.2459.
  • McFarland DJ, Sarnacki WA, Wolpaw JR. 2010. Electroencephalographic (EEG) control of three-dimensional movement. J Neural Eng. 7(3):036007. doi: 10.1088/1741-2560/7/3/036007.
  • Naser MYM, Bhattacharya S. 2023. Resting EEG state, an insight into motor imagery signal characteristics. 2023 15th Biomedical Engineering International Conference (BMEiCON), Oct. doi: 10.1109/BMEiCON60347.2023.10321821.
  • Orhan U, Hekim M, Ozer M. 2011. EEG signals classification using the K-means clustering and a multilayer perceptron neural network model. Expert Syst Appl. 38(10):13475–13481. doi: 10.1016/j.eswa.2011.04.149.
  • Padfield N, Zabalza J, Zhao H, Masero V, Ren J. 2019. EEG-based brain-computer interfaces using motor-imagery: techniques and challenges. Sensors. 19(6):1423. doi: 10.3390/s19061423.
  • Pfurtscheller G, Flotzinger D, Kalcher J. 1993. Brain-computer interface—a new communication device for handicapped persons. J Microcomput Appl. 16(3):293–299. doi: 10.1006/jmca.1993.1030.
  • Pfurtscheller G, Müller-Putz GR, Schlögl A, Graimann B, Scherer R, Leeb R, Brunner C, Keinrath C, Lee F, Townsend G, et al. 2006. 15 years of BCI research at Graz University of technology: current projects. IEEE Trans Neural Syst Rehabil Eng. 14(2):205–210. doi: 10.1109/tnsre.2006.875528.
  • Pfurtscheller G, Neuper C, Guger C, Harkam W, Ramoser H, Schlögl A, Obermaier B, Pregenzer M. 2000. Current trends in Graz brain-computer interface (BCI) research. IEEE Trans Rehabil Eng. 8(2):216–219. doi: 10.1109/86.847821.
  • Roy Y, Banville H, Albuquerque I, Gramfort A, Falk TH, Faubert J. 2019. Deep learning-based electroencephalography analysis: a systematic review. J Neural Eng. 16(5):051001. doi: 10.1088/1741-2552/ab260c.
  • Santhanam G, Ryu SI, Yu BM, Afshar A, Shenoy KV. 2006. High-performance brain–computer interface. Nature. 442(7099):195–198. doi: 10.1038/nature04968.
  • Schirrmeister RT, Springenberg JT, Fiederer LDJ, Glasstetter M, Eggensperger K, Tangermann M, Hutter F, Burgard W, Ball T. 2017. Deep learning with convolutional neural networks for EEG decoding and visualization. Hum Brain Mapp. 38(11):5391–5420. doi: 10.1002/hbm.23730.
  • Sengur A, Gedikpinar M, Akbulut Y, Deniz E, Bajaj V, Guo Y. 2017. DeepEMGNet: an application for efficient discrimination of ALS and normal EMG signals. In Advances in intelligent systems and computing, p. 619–625. doi: 10.1007/978-3-319-65960-2_77.
  • Sitaram R, Caria A, Veit R, Gaber T, Rota G, Kuebler A, Birbaumer N. 2007. fMRI brain-computer interface: a tool for neuroscientific research and treatment. Comput Intell Neurosci. 2007:25487–25410. doi: 10.1155/2007/25487.
  • Stergiadis C, Kostaridou V-D, Veloudis S, Kazis D, Klados MA. 2022. A personalized user authentication system based on EEG signals. Sensors. 22(18):6929. doi: 10.3390/s22186929.
  • Tabar YR, Halici U. 2016. A novel deep learning approach for classification of EEG motor imagery signals. J Neural Eng. 14(1):016003. doi: 10.1088/1741-2560/14/1/016003.
  • Tatar AB. 2022. Biometric identification system using EEG signals. Neural Comput Appl. 35(1):1009–1023. doi: 10.1007/s00521-022-07795-0.
  • Wang Y, Hong B, Gao X, Gao S. 2007. Implementation of a brain-computer interface based on three states of motor imagery. 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. doi: 10.1109/IEMBS.2007.4353477.
  • Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM. 2002. Brain–computer interfaces for communication and control. Clin Neurophysiol. 113(6):767–791. doi: 10.1016/s1388-2457(02)00057-3.
  • Yadava M, Kumar P, Saini R, Roy PP, Prosad Dogra D. 2017. Analysis of EEG signals and its application to neuromarketing. Multimed Tools Appl. 76(18):19087–19111. doi: 10.1007/s11042-017-4580-6.
  • Zhang Y, Cai H, Nie L, Xu P, Zhao S, Guan C. 2021. An end-to-end 3D convolutional neural network for decoding attentive mental state. Neural Netw. 144:129–137. doi: 10.1016/j.neunet.2021.08.019.
  • Zhao Z, Liu C, Li Y, Li Y, Wang J, Lin B-S, Li J. 2019. Noise rejection for wearable ECGs using modified frequency slice wavelet transform and convolutional neural networks. IEEE Access. 7:34060–34067. doi: 10.1109/ACCESS.2019.2900719.
  • Zhou Q. 2020. EEG dataset of 7-day motor imagery BCI. IEEE Dataport, Nov. doi: 10.21227/f1c7-7x89.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.