44
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Finite element analysis of a three-dimensional cervical spine model with muscles based on CT scan data

, , , , , , & show all
Received 03 Apr 2024, Accepted 23 Jun 2024, Published online: 04 Jul 2024

References

  • Ackland TR, Elliott B, Bloomfield J. 2009. Applied anatomy and biomechanics in sport. Chapter 8. Strength. Hum Kinet; p. 119–155.
  • Biswas JK, Roy S, Pradhan R, Rana M, Majumdar S. 2019. Effects of cervical disc replacement and anterior fusion for different bone conditions: a finite element study. Int J Mult Comp Eng. 17(4):411–427. doi: 10.1615/IntJMultCompEng.2019030212.
  • Blouin J-S, Siegmund GP, Carpenter MG, Inglis JT. 2007. Neural control of superficial and deep neck muscles in humans. J Neurophysiol. 98(2):920–928. doi: 10.1152/jn.00183.2007.
  • Brolin K, Halldin P. 2004. Development of a finite element model of the upper cervical spine and a parameter study of ligament characteristics. Spine. 29(4):376–385. doi: 10.1097/01.brs.0000090820.99182.2d.
  • Cai X-Y, YuChi C-X, Du C-F, Mo Z-J. 2020. The effect of follower load on the range of motion, facet joint force, and intradiscal pressure of the cervical spine: a finite element study. Med Biol Eng Comput. 58(8):1695–1705. doi: 10.1007/s11517-020-02189-7.
  • Chen Q, Wang Z, Zhang S. 2023. Exploring the latest advancements in physical therapy techniques for treating cervical spondylosis patients: a narrative review. Biomol Biomed. 23(5):752–759. doi: 10.17305/bb.2023.9049.
  • Chen C, Yuchi CX, Gao Z, Ma X, Zhao D, Li JW, Xu B, Zhang CQ, Wang Z, Du CF, et al. 2020. Comparative analysis of the biomechanics of the adjacent segments after minimally invasive cervical surgeries versus anterior cervical discectomy and fusion: a finite element study. J Orthop Translat. 23:107–112. doi: 10.1016/j.jot.2020.03.006.
  • Deng B, Begeman PC, Yang KH, Tashman S, King AI. 2000. Kinematics of human cadaver cervical spine during low speed rear-end impacts. Stapp Car Crash J. 44:171–188. doi: 10.4271/2000-01-sc13.
  • Diao H, Xin H, Dong J, He X, Li D, Jin Z. 2017. Prediction of cervical spinal joint loading and secondary motion using a musculoskeletal multibody dynamics model via force-dependent kinematics approach. Spine. 42(24):E1403–E1409. doi: 10.1097/brs.0000000000002176.
  • Du C-F, Cai X-Y, Gui W, Sun M-S, Liu Z-X, Liu C-J, Zhang C-Q, Huang Y-P. 2021. Does oblique lumbar interbody fusion promote adjacent degeneration in degenerative disc disease: a finite element analysis. Comput Biol Med. 128:104122. doi: 10.1016/j.compbiomed.2020.104122.
  • Farshad-Amacker NA, Farshad M, Winklehner A, Andreisek G. 2015. MR imaging of degenerative disc disease. Eur J Radiol. 84(9):1768–1776. doi: 10.1016/j.ejrad.2015.04.002.
  • Goel VK, Nyman E. 2016. Computational modeling and finite element analysis. Spine. 41 Suppl 7(Suppl 7):S6–S7. doi: 10.1097/brs.0000000000001421.
  • Hong-Wan N, Ee-Chon T, Qing-Hang Z. 2004. Biomechanical effects of C2-C7 intersegmental stability due to laminectomy with unilateral and bilateral facetectomy. Spine. 29(16):1737–1745; discussion 1746. doi: 10.1097/01.brs.0000134574.36487.eb.
  • Huelke DF, Nusholtz GS. 1986. Cervical spine biomechanics: a review of the literature. J Orthop Res. 4(2):232–245. doi: 10.1002/jor.1100040212.
  • Ibrahim AG, Alahmari MA, Alsuayri HF, Algomshah MM, Almlfi GS, Alamri DA, Saeed Al, Akalbi S, Hassan Althunayan K, Ibrahim Ali Alhammad S, et al. 2021. A review on diagnosis and management of cervical spondylosis. J Pharm Res Int. 33(47A):668–674. doi: 10.9734/jpri/2021/v33i47A33059.
  • Ito S, Ivancic PC, Panjabi MM, Cunningham BW. 2004. Soft tissue injury threshold during simulated whiplash: a biomechanical investigation. Spine. 29(9):979–987. doi: 10.1097/00007632-200405010-00006.
  • Ivancic PC, Xiao M. 2011. Understanding whiplash injury and prevention mechanisms using a human model of the neck. Accid Anal Prev. 43(4):1392–1399. doi: 10.1016/j.aap.2011.02.014.
  • Kessel L. 2005. The physiology of the joints. Volume 3. The trunk and the vertebral column. I. A. Kapandji, Paris. Second edition. 275 × 220 mm. Pp. 251, with 397 illustrations. 1974. Edinburgh: Churchill Livingstone. £4. Br J Surg. 62(5):419–419. doi: 10.1002/bjs.1800620542.
  • Kirnaz S, Capadona C, Wong T, Goldberg JL, Medary B, Sommer F, McGrath LB Jr, Härtl R. 2022. Fundamentals of intervertebral disc degeneration. World Neurosurg. 157:264–273. doi: 10.1016/j.wneu.2021.09.066.
  • Lee SH, Im YJ, Kim KT, Kim YH, Park WM, Kim K. 2011. Comparison of cervical spine biomechanics after fixed- and mobile-core artificial disc replacement: a finite element analysis. Spine. 36(9):700–708. doi: 10.1097/BRS.0b013e3181f5cb87.
  • Li F, Li H, Hu W, Su S, Wang B. 2016. Simulation of muscle activation with coupled nonlinear FE models. J Mech Med Biol. 16(6):1650082. doi: 10.1142/S0219519416500822.
  • Lin D, He Z, Weng R, Zhu Y, Lin Z, Deng Y, Yang Y, Tan J, Wang M, Li Y, et al. 2023. Comparison of biomechanical parameters of two Chinese cervical spine rotation manipulations based on motion capture and finite element analysis. Front Bioeng Biotechnol. 11:1195583. doi: 10.3389/fbioe.2023.1195583.
  • Lin M, Paul R, Dhar UK, Doulgeris J, O'Connor TE, Tsai CT, Vrionis FD. 2023. A review of finite element modeling for anterior cervical discectomy and fusion. Asian Spine J. 17(5):949–963. doi: 10.31616/asj.2022.0295.
  • Manickam PS, Roy S. 2022. The biomechanical study of cervical spine: a finite element analysis. Int J Artif Organs. 45(1):89–95. doi: 10.1177/0391398821995495.
  • Manickam PS, Roy S, Shetty GM. 2021. Biomechanical evaluation of a novel S-type, dynamic zero-profile cage design for anterior cervical discectomy and fusion with variations in bone graft shape: a finite element analysis. World Neurosurg. 154:e199–e214. doi: 10.1016/j.wneu.2021.07.013.
  • Netter FH. 2022. Netter atlas of human anatomy: a systems approach. Chapter 4. Muscular System. Head and Neck. (Plate S–184-194). Elsevier Health Sciences.
  • Nhu D, Le JVZ. 2006. Statistical analysis of environmental space-time processes. New York (NY): Springer; p. 11.
  • Nightingale RW, Sganga J, Cutcliffe H, Bass CR. 2016. Impact responses of the cervical spine: a computational study of the effects of muscle activity, torso constraint, and pre-flexion. J Biomech. 49(4):558–564. doi: 10.1016/j.jbiomech.2016.01.006.
  • Nishida N, Tripathi S, Mumtaz M, Kelkar A, Kumaran Y, Sakai T, Goel VK. 2022. Soft tissue injury in cervical spine is a risk factor for intersegmental instability: a finite element analysis. World Neurosurg. 164:e358–e366. doi: 10.1016/j.wneu.2022.04.112.
  • Panjabi MM, Crisco JJ, Vasavada A, Oda T, Cholewicki J, Nibu K, Shin E. 2001. Mechanical properties of the human cervical spine as shown by three-dimensional load-displacement curves. Spine. 26(24):2692–2700. doi: 10.1097/00007632-200112150-00012.
  • Panjabi MM, Nibu K, Cholewicki J. 1998. Whiplash injuries and the potential for mechanical instability. Eur Spine J. 7(6):484–492. doi: 10.1007/s005860050112.
  • Perumal L, Mon DTT. 2011. Finite elements for engineering analysis: a brief review. In: Proceedings of the International Conference on Modeling, Simulation and Control, Singapore.
  • Pospiech J, Stolke D, Wilke HJ, Claes LE. 1999. Intradiscal pressure recordings in the cervical spine. Neurosurgery. 44(2):379–384. discussion 384–375. doi: 10.1097/00006123-199902000-00078.
  • Saito T, Yamamuro T, Shikata J, Oka M, Tsutsumi S. 1991. Analysis and prevention of spinal column deformity following cervical laminectomy. I. Pathogenetic analysis of postlaminectomy deformities. Spine. 16(5):494–502. doi: 10.1097/00007632-199105000-00002.
  • Shen L, Meng X, Zhang Z, Wang T. 2018. Physical exercise for muscle atrophy. In: Xiao J, editor. Muscle atrophy. Singapore: Springer; p. 529–545. doi: 10.1007/978-981-13-1435-3_24.
  • Shi MG, Hassan MTZ, Meguid SA. 2019. Nonlinear multibody dynamics and finite element modeling of occupant response: part II—frontal and lateral vehicle collisions. Int J Mech Mater Des. 15(1):23–41. doi: 10.1007/s10999-019-09450-4.
  • Singh S, Kumar D, Kumar S. 2014. Risk factors in cervical spondylosis. J Clin Orthop Trauma. 5(4):221–226. doi: 10.1016/j.jcot.2014.07.007.
  • Tahmid S, Love BM, Liang Z, Yang J. 2022. Cervical spine finite element models for healthy subjects: development and validation. J Comput Inf Sci Eng. 23(4):044501.
  • Takagi I, Eliyas JK, Stadlan N. 2011. Cervical spondylosis: an update on pathophysiology, clinical manifestation, and management strategies. Dis Mon. 57(10):583–591. doi: 10.1016/j.disamonth.2011.08.024.
  • Toosizadeh N, Haghpanahi M. 2011. Generating a finite element model of the cervical spine: estimating muscle forces and internal loads. Sci Iran. 18(6):1237–1245. doi: 10.1016/j.scient.2011.10.002.
  • Varghese V, Baisden J, Yoganandan N. 2022. Normalization technique to build patient specific muscle model in finite element head neck spine. Med Eng Phys. 107:103857. doi: 10.1016/j.medengphy.2022.103857.
  • Wei W, Liu Y, Du X, Li N. 2017. Development and validation of a C0-C7 cervical spine finite element model. MATEC Web Conf. 108:13007. doi: 10.1051/matecconf/201710813007.
  • White NA, Moreno DP, Brown PJ, Gayzik FS, Hsu W, Powers AK, Stitzel JD. 2014. Effects of cervical arthrodesis and arthroplasty on neck response during a simulated frontal automobile collision. Spine J. 14(9):2195–2207. doi: 10.1016/j.spinee.2014.03.001.
  • Williams JL, Belytschko TB. 1983. A three-dimensional model of the human cervical spine for impact simulation. J Biomech Eng. 105(4):321–331. doi: 10.1115/1.3138428.
  • Wu H, Deng X, Hu L, Liu J, Liu X. 2022. Research on neck response of elderly drivers in rear collision. Biomed Res Int. 2022:5239515. doi: 10.1155/2022/5239515.
  • Yang KH, Zhu F, Luan F, Zhao L, Begeman PC. 1998. Development of a finite element model of the human neck. SAE Technical Paper 983157. doi: 10.4271/983157.
  • Yin L, Li N, Jia W, Wang N, Liang M, Yang X, Du G. 2021. Skeletal muscle atrophy: from mechanisms to treatments. Pharmacol Res. 172:105807. doi: 10.1016/j.phrs.2021.105807.
  • Yoganandan N, Sances A Jr, Pintar F. 1989. Biomechanical evaluation of the axial compressive responses of the human cadaveric and manikin necks. J Biomech Eng. 111(3):250–255. doi: 10.1115/1.3168374.
  • Zafarparandeh I, Erbulut DU, Ozer AF. 2016. Motion analysis study on sensitivity of finite element model of the cervical spine to geometry. Proc Inst Mech Eng H. 230(7):700–706. doi: 10.1177/0954411916644634.
  • Zhang H, Bai J. 2007. Development and validation of a finite element model of the occipito-atlantoaxial complex under physiologic loads. Spine. 32(9):968–974. doi: 10.1097/01.brs.0000261036.04919.91.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.