325
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Release of nitrous oxide and dinitrogen from a transition bog under drained and rewetted conditions due to denitrification: results from a [15N]nitrate–bromide double-tracer study

, , , , &
Pages 300-321 | Received 20 Jun 2014, Accepted 17 Nov 2014, Published online: 18 Feb 2015

References

  • Martikainen PJ, Nykänen H, Crill P, Silvola J. Effect of a lowered water table on nitrous oxide fluxes from northern peatlands. Nature. 1993;366:51–53. doi: 10.1038/366051a0
  • Augustin J, Merbach W, Schmidt W, Reining E. Effect of changing temperature and water table on trace gas emission from minerotrophic mires. Angew Bot. 1996;70:45–51.
  • Regina K, Nykänen H, Silvola J, Martikainen PJ. Fluxes of nitrous oxide from boreal peatlands as affected by peatland type, water table level and nitrification capacity. Biogeochemistry. 1996;35:401–418. doi: 10.1007/BF02183033
  • Silvan N, Regina K, Kitunen V, Vasander H, Laine J. Gaseous nitrogen loss from a restored peatland buffer zone. Soil Biol Biochem. 2002;34:721–728. doi: 10.1016/S0038-0717(02)00002-0
  • Rückauf U, Augustin J, Russow R, Merbach W. Nitrate removal from drained and reflooded fen soils affected by soil N transformation processes and plant uptake. Soil Biol Biochem. 2004;36:77–90. doi: 10.1016/j.soilbio.2003.08.021
  • Tauchnitz N, Brumme R, Bernsdorf S, Meissner R. Nitrous oxide and methane fluxes of a pristine slope mire in the German National Park Harz Mountains. Plant Soil. 2008;303:131–138. doi: 10.1007/s11104-007-9493-0
  • Joosten H, Couwenberg C. Are emission reductions from peatlands MRV-able? Report. Ede: Wetlands International; 2009. 14 p.
  • Jungkunst HF, Fiedler S. Latitudinal differentiated water table control of carbon dioxide, methane and nitrous oxide fluxes from hydromorphic soils: feedbacks to climate change. Glob Chang Biol. 2007;13:2668–2683. doi: 10.1111/j.1365-2486.2007.01459.x
  • Augustin J, Chojnicki B. Austausch von klimarelevanten Spurengasen, Klimawirkung und Kohlenstoffdynamik in den ersten Jahren der Wiedervernässung von degradiertem Niedermoorgrünland. In: Gelbrecht J, Zak D, Augustin J, editors. Phosphor-und Kohlenstoff-Dynamik und Vegetationsentwicklung in wiedervernässten Mooren des Peenetals in Mecklenburg-Vorpommern. Berlin: Leibniz-Institut für Gewässerökologie und Binnenfischerei; 2008. p. 50–67.
  • Wilson D, Alm J, Laine J, Byrne KA, Farell EP, Tuittila E-S. Rewetting of cutaway peatlands: are we recreating hot spots of methane emissions? Restor Ecol. 2008;17:796–806. doi: 10.1111/j.1526-100X.2008.00416.x
  • Brumme R, Borken W, Finke S. Hierarchical control on nitrous oxide emission in forest ecosystems. Glob Biogeochem Cycl. 1999;13:1137–1148. doi: 10.1029/1999GB900017
  • Russow R, Sich I, Neue HU. The formation of the trace gases NO and N2O in soils by the coupled processes of nitrification and denitrification:results of kinetic 15N tracer investigations. Chemosphere – Glob Change Sci. 2000;2:359–366. doi: 10.1016/S1465-9972(00)00012-X
  • Russow R, Stange CF, Neue HU. Role of nitrite and nitric oxide in the processes of nitrification and denitrification in soil: results from 15N tracer experiments. Soil Biol Biochem. 2009;41:785–795. doi: 10.1016/j.soilbio.2009.01.017
  • Ambus P, Zechmeister-Boltenstern S, Butterbach-Bahl K. Sources of nitrous oxide emitted from European forest soils. Biogeosciences. 2006;3:135–145. doi: 10.5194/bg-3-135-2006
  • Ruser R, Flessa H, Russow R, Schmidt G, Buegger F, Munch JC. Emission of N2O, N2 and CO2 from soil fertilized with nitrate: effect of compaction, soil moisture and rewetting. Soil Biol Biochem. 2006;38:263–274. doi: 10.1016/j.soilbio.2005.05.005
  • Poth M, Focht DD. 15N kinetic analysis of N2O production by Nitrosomonas europaea:an examination of nitrifier denitrification. Appl Environ Microbiol. 1985;49:1134–1141.
  • Davidson EA. Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems. In: Rogers JE, Whitman WB, editors. Microbial production and consumption of greenhouse gases: methane, nitrogen oxides and halomethanes. Washington: American Society of Microbiology; 1991. p. 219–235.
  • Wrage N, Velthof GL, van Beusichem ML, Oenema O. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol Biochem. 2001;33:1723–1732. doi: 10.1016/S0038-0717(01)00096-7
  • Russow R, Spott O, Stange CF. Evaluation of nitrate and ammonium as sources of NO and N2O emissions from Black Earth soils (Haplic Chernozem) based on 15N field experiments. Soil Biol Biochem. 2008;40:380–391. doi: 10.1016/j.soilbio.2007.08.020
  • Stange CF, Spott O, Müller C. An inverse abundance approach to separate soil nitrogen pools and gaseous nitrogen fluxes into fractions related to ammonium, nitrate and soil organic nitrogen. Eur J Soil Sci. 2009;60:907–915. doi: 10.1111/j.1365-2389.2009.01188.x
  • Knowles R. Denitrification. Microbiol Rev. 1982;46:43–70.
  • Tiedje JM. Ecology of denitrification and dissimilatory nitrate reduction to ammonia. In: Zehnder AJB, editor. Biology of anaerobic microorganisms. New York: John Wiley & Sons; 1988. p. 197–244.
  • Bridgham SD, Updegraff K, Pastor J. Carbon, nitrogen and phosphorus mineralization in northern wetlands. Ecology. 1998;79:1545–1561. doi: 10.1890/0012-9658(1998)079[1545:CNAPMI]2.0.CO;2
  • Silvan N, Tuittila E, Kitunen V, Vasander H, Laine J. Nitrate uptake by Eriophorum vaginatum controls N2O production in a restored peatland. Soil Biol Biochem. 2005;37:1519–1526. doi: 10.1016/j.soilbio.2005.01.006
  • Moore TR, Bubier JL, Bledzki L. Litter decomposition in temperate peatland ecosystems:the effect of substrate and site. Ecosystems. 2007;10:949–963. doi: 10.1007/s10021-007-9064-5
  • Repo ME, Susiluoto S, Lind SE, Elsakov V, Biasi C, Virtanen T, Martikainen PJ. Large N2O emissions from tundra peatlands higher than expected. Nat Geosci. 2009;2:189–192. doi: 10.1038/ngeo434
  • Roobroeck D, Butterbach-Bahl K, Brüggemann N, Boeckx P. Dinitrogen and nitrous oxide exchanges from an undrained monolith fen: short-term responses following nitrate addition. Eur J Soil Sci. 2010;61:662–670. doi: 10.1111/j.1365-2389.2010.01269.x
  • Aerts R. Atmospheric nitrogen deposition affects potential denitrification and N2O emission from peat soils in the netherlands. Soil Biol Biochem. 1997;29:1153–1156. doi: 10.1016/S0038-0717(96)00308-2
  • Francez AJ, Pinay G, Josselin N, Williams BL. Denitrification triggered by nitrogen addition in Sphagnum magellanicum peat. Biogeochemistry. 2011;106:435–441. doi: 10.1007/s10533-010-9523-5
  • McKenney DJ, Drury CF, Findlay WI, Mutus B, McDonell T, Gajda C. Kinetics of denitrification by Pseudomonas fluorescens: oxygen effects. Soil Biol Biochem. 1994;26:901–908. doi: 10.1016/0038-0717(94)90306-9
  • Morley N, Baggs EM. Carbon and oxygen controls on N2O and N2 production during nitrate reduction. Soil Biol Biochem. 2010;42:1864–1871. doi: 10.1016/j.soilbio.2010.07.008
  • Christensen S, Simkens S, Tiedje JM. Spatial variation in denitrification: dependency of activity centers on the soil environment. Soil Sci Soc Am J. 1990;54:1608–1613. doi: 10.2136/sssaj1990.03615995005400060016x
  • Wray HE, Bayley SE. Denitrification rates in marsh fringes and fens in two boreal peatlands in Alberta, Canada. Wetlands. 2007;27:1036–1045. doi: 10.1672/0277-5212(2007)27[1036:DRIMFA]2.0.CO;2
  • Well R, Augustin J, Meyer K, Myrold DD. Comparison of field and laboratory measurement of denitrification and N2O production in the saturated zone of hydromorphic soils. Soil Biol Biochem. 2003;35:783–799. doi: 10.1016/S0038-0717(03)00106-8
  • Delaune RD, Reddy VR. Redox potential. In: Hillel D, editor. Encyclopedia of soils in the environment. Oxford: Elsevier; 2005. p. 366–371.
  • Trudell MR, Gillham RW, Cherry JA. An in-situ study of the occurrence and rate of denitrification in a shallow unconfined sand aquifer. J Hydrol. 1986;83:251–268. doi: 10.1016/0022-1694(86)90155-1
  • Jaynes DB, Bowman RS, Rice RC. Transport of conservative tracer in the field under continuous flood irrigation. Soil Sci Soc Am J. 1988;52:618–624. doi: 10.2136/sssaj1988.03615995005200030003x
  • Kelly PB, Pomes ML. Preferential flow and transport of nitrate and bromide in claypan soil. Ground Water. 1997;36:484–494. doi: 10.1111/j.1745-6584.1998.tb02820.x
  • Russow R, Knappe S. Bromid als Tracer zur Untersuchung der Wasserbewegung und der Nitratverlagerung in Böden: Vergleich mit stabilisotopen Tracern. [Bromide as a tracer to study the movement of water and nitrate leaching in soils: comparison with stable isotope tracers]. Munich: GSF-Berichte 1/1999: 79–83.
  • Russow R, Tauchnitz N, Spott O, Mothes S, Bernsdorf S, Meissner R. Nitrate turnover in a peat soil under drained and rewetted conditions:results from a[15N]nitrate–bromide double-tracer study. Isot Environ Health Stud. 2013;49:438–453. doi: 10.1080/10256016.2013.831089
  • Stange CF, Spott O, Apelt B, Russow R. Automated and rapid online determination of 15N abundance and concentration of ammonium, nitrite or nitrate in aqueous samples by the SPINMAS technique. Isot Environ Health Stud. 2007;43:227–236. doi: 10.1080/10256010701550658
  • Russow R. Determination of 15N in 15N-enriched nitrite and nitrate in aqueous samples by reaction continuous-flow quadrupole mass spectrometry. Rapid Commun Mass Spectrom. 1999;13:1334–1338. doi: 10.1002/(SICI)1097-0231(19990715)13:13<1334::AID-RCM606>3.0.CO;2-C
  • Heincke M, Kaupenjohann M. Effects of soil solution on the dynamics of N2O emissions:a review. Nutr Cycl Agroecosys. 1999;55:133–157. doi: 10.1023/A:1009842011599
  • Segschneider, H-J, Sich I, Russow R. Use of special configured gas chromatographic system for the simultaneous determination of methane, nitrous oxide and carbon dioxide in ambient air and soil atmosphere. Transactions of the 9th Nitrogen Workshop, September 1996, Braunschweig. p. 547–550.
  • Schmidt G, Segschneider H-J, Russow R. Bestimmung der 15N Häufigkeit bei nichtstatistischer 15N-Verteilung in N2 sowie bei N2O in Bodenluftproben mittels GC-R-IRMS-Koplung in einem Probenlauf. Isot Environ Health Stud. 1997;33:235–243. doi: 10.1080/10256019808036375
  • Chadwick R, Good P, Andrews T, Martin G. Surface warming patterns drive tropical rainfall pattern responses to CO2 forcing on all timescales. Geophys Res Lett. 2014;41:610–615. doi: 10.1002/2013GL058504
  • Folorunso OA, Rolston DE. Spatial and spectral relationships between field-measured denitrification gas fluxes and soil properties. Soil Sci Soc Am J. 1985;49:1087–1093. doi: 10.2136/sssaj1985.03615995004900050003x
  • Clough TJ, Jarvis SC, Dixon ER, Stevens RJ, Laughlin RJ, Hatch DJ. Carbon induced subsoil denitrification of 15N-labelled nitrate in 1 m deep soil columns. Soil Biol Biochem. 1999;31:31–41. doi: 10.1016/S0038-0717(98)00097-2
  • Jungkunst HF, Freibauer A, Neufeldt H, Bareth G. Nitrous oxide emissions from agricultural land use in Germany – a synthesis of available annual field data. J Plant Nutr Soil Sci. 2006;169:341–351. doi: 10.1002/jpln.200521954
  • van den Heuvel RN, Hefting MM, Tan NCG, Jetten MSM, Verhoeven JTA. N2O emission hotspots at different spatial scales and governing factors for small scale hotspots. Sci Total Environ. 2009;407: 2325–2332. doi: 10.1016/j.scitotenv.2008.11.010
  • Spott O, Russow R, Apelt B, Stange F. A 15N aided artificial atmosphere approach for an online determination of soil N2 release using the zeolite Köstrolith SX6®. Rapid Commun Mass Spectrom. 2006;20:3267–3274. doi: 10.1002/rcm.2722
  • Russow R, Stevens RJ, Laughlin RJ. Accuracy and precision for measurements of the mass ratio 30/28 in dinitrogen from air samples and its application to the investigation of N losses from soil by denitrification. Isot Environ Health Stud. 1996;32:289–297. doi: 10.1080/10256019608036322
  • Ambus P, Christensen S. Denitrification variability and control in a riparian fen irrigated with agricultural drainage water. Soil Biol Biochem. 1993;25:915–923. doi: 10.1016/0038-0717(93)90094-R
  • Nykänen H, Alm J, Lång K, Silvola J, Martikainen PJ. Emissions of CH4, N2O and CO2 from a virgin fen and a fen drained for grassland in Finland. J Biogeogr. 1995;22:351–357. doi: 10.2307/2845930
  • Palmer K, Drake HL, Horn AM. Association of novel and highly diverse acid-tolerant denitrifiers with N2O fluxes of an acidic fen. Appl Environ Microbiol. 2010;76:1125–1134. doi: 10.1128/AEM.02256-09
  • Well R, Augustin J, Davis J, Griffith SM, Meyer K, Myrold DD. Production and transport of denitrification gases in shallow ground water. Nutr Cycl Agroecosys. 2001;60:65–70. doi: 10.1023/A:1012659131811
  • Blicher-Mathiesen G, Hoffmann CC. Denitrification as a sink for dissolved nitrous oxide in a freshwater riparian fen. J Environ Qual. 1999;28:257–262. doi: 10.2134/jeq1999.00472425002800010031x
  • Hiscock KM, Bateman AS, Mühlherr IH, Fukada T, Dennis PF. Indirect emissions of nitrous oxide from regional aquifers in the United Kingdom. Environ Sci Technol. 2003;37:3507–3512. doi: 10.1021/es020216w
  • van Groenigen JW, Georgius PJ, van Kessel C, Hummelink EWJ, Velthof GL, Zwart KB. Subsoil 15N–N2O concentrations in a sandy soil profile after application of 15N-fertilizer. Nutr Cycl Agroecosys. 2005;72: 13–25. doi: 10.1007/s10705-004-7350-6
  • Weymann D, Well R, von der Heide C, Böttche, J, Flessa H, Duijnesfeld WHM. Recovery of groundwater N2O at the soil surface and its contribution to total N2O emissions. Nutr Cycl Agroecosys. 2009;85:299–312. doi: 10.1007/s10705-009-9269-4
  • Colmer TD. Long-distance transport of gases in plants, a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ. 2003;26:17–36. doi: 10.1046/j.1365-3040.2003.00846.x
  • Jørgensen CJ, Struwe S, Elberling B. Temporal trends in N2O flux dynamics in a Danish wetland – effects of plant-mediated gas transport of N2O and O2 following changes in water level and soil mineral-N availability. Glob Chang Biol. 2012;18:210–222. doi: 10.1111/j.1365-2486.2011.02485.x
  • Augustin J, Russow R, Münchmeyer U. Effect of wetland plants on N transformation and gaseous N losses (N2O, N2) of degraded fen peatlands. Abstract 10th Nitrogen workshop, Royal Veterinary and Agricultural University Copenhagen, Denmark, August 23–26, 1999.
  • Reddy KR, Patrick WH, Lindau CW. Nitrification–denitrification at the plant root–sediment interface in wetlands. Limnol Oceanogr. 1989;34:1004–1013. doi: 10.4319/lo.1989.34.6.1004
  • Arth I, Frenzel P, Conrad R. Denitrification coupled to nitrification in the rhizosphere of rice. Soil Biol Biochem. 1998;30:509–515. doi: 10.1016/S0038-0717(97)00143-0
  • Ström L, Lamppa A, Christensen TR. Greenhouse gas emissions from a constructed wetland in southern Sweden. Wetl Ecol Manag. 2007;15:43–50. doi: 10.1007/s11273-006-9010-x
  • Groffman PM, Gold AJ, Howard G. Hydrologic effects on soil microbial activities. Soil Sci Soc Am J. 1995;59:478–481. doi: 10.2136/sssaj1995.03615995005900020030x
  • McGill BM, Sutton-Grier AE, Wright JP. Plant trait diversity buffers variability in denitrification potential over changes in season and soil conditions. Plos ONE. 2010;5:e11618. doi: 10.1371/journal.pone.0011618
  • Strauss EA, Richardson WB, Cavanaugh JC, Bartsch LA, Kreiling RM, Standorf AJ. Variability and regulation of denitrification in an Upper Mississippi River backwater. J N Am Benthol Soc. 2006;25:596–606. doi: 10.1899/0887-3593(2006)25[596:VARODI]2.0.CO;2
  • Davidsson TE, Leonardson L. Production of nitrous oxide in artificially flooded and drained soils. Wetl Ecol Manag. 1997;5:111–119. doi: 10.1023/A:1008297609079
  • Lensi R, Chalamet A. Denitrification in waterlogged soils: in situ temperature-dependent variations. Soil Biol Biochem. 1982;14:51–55. doi: 10.1016/0038-0717(82)90076-1
  • Chalamet A. Effects of environmental factors on denitrification. In: Goltemann HL, editor. Denitrification in the nitrogen cycle. Nato Conference Series I, 9; 1985. p. 7–29. New York, NY: Plenum Press.
  • Brumme R. Mechanisms of carbon and nutrient release and retention in beech forest gaps. III. Environmental regulation of soil respiration and nitrous oxide emissions along a microclimatic gradient. Plant Soil. 1995;168–169:593–600. doi: 10.1007/BF00029373
  • Oura A, Shindo J, Fumoto T, Toda H, Kawashima H. Effects of nitrogen deposition on nitrous oxide emissions from the forest floor. Water Air Soil Pollut. 2001;130:673–678. doi: 10.1023/A:1013817031062
  • Koponen HT, Duran CE, Maljanen M, Hytönen J, Martikainen PJ. Temperature responses of NO and N2O emissions from boreal organic soil. Soil Biol Biochem. 2006;38:1779–1787. doi: 10.1016/j.soilbio.2005.12.004
  • Abdalla M, Jones M, Smith P, Williams M. Nitrous oxide fluxes and denitrification sensitivity to temperature in Irish pasture soils. Soil Use Manage. 2009;25:376–388. doi: 10.1111/j.1475-2743.2009.00237.x
  • Yu J, Liu J, Wang J, Sun W, Patrick WH, Meixner FM. Nitrous oxide emission from Deyeuxia angustifolia freshwater marsh in northeast China. Environ Manage. 2007;40:613–622. doi: 10.1007/s00267-006-0349-9
  • Regina K, Silvola J, Martikainen PJ. Short-term effects of changing water table on N2O fluxes from peat monoliths from natural and drained boreal peatlands. Glob Change Biol. 1999;5:183–189. doi: 10.1046/j.1365-2486.1999.00217.x
  • Böhlmann N, Meissner R, Bernsdorf S, Böhme F, Russow R, Wegener U. Studies of atmospheric nitrogen deposition in a mire of the German national park Hochharz mountains using two different methods. Water Air Soil Pollut. 2005;168:17–32. doi: 10.1007/s11270-005-0587-0
  • Jørgensen CJ, Elberling B. Effects of flooding-induced N2O production, consumption and emission dynamics on the annual N2O emission budget in wetland soil. Soil Biol Biochem. 2012;53:9–17. doi: 10.1016/j.soilbio.2012.05.005
  • Pedrazzini FR, Moore PA. N2O emission and changing redox potential and pH in submerged soil samples. JPNSS. 1983;146:660–665.
  • Mosier AR, Mohanty SR, Bhadrachalam A, Chakravorti SP. Evolution of dinitrogen and nirous oxide from the soil to the atmosphere through rice plants. Biol Fertil Soils. 1990;9:61–67. doi: 10.1007/BF00335863
  • Clough TJ, Sherlock RR, Cameron KC, Stevens RJ, Laughlin RJ, Müller C. Resolution of the 15N balance enigma? Aust J Soil Res. 2001;39:1419–1431. doi: 10.1071/SR00092
  • Grant RF, Pattey E. Modelling variability in N2O emissions from fertilized agricultural fields. Soil Biol Biochem. 2003;35:225–243. doi: 10.1016/S0038-0717(02)00256-0
  • Gao Y, Liu X, Yi N, Wang Y, Guo J, Zhang Z, Yan S. Estimation of N2 and N2O ebullition from trophic water using an improved bubble trap device. Ecol Eng. 2013;57:403–412. doi: 10.1016/j.ecoleng.2013.04.020
  • Baulch HM, Dillon PJ, Maranger R, Schiff SL. Diffusive and ebullitive transport of methane and nitrous oxide from streams: are bubble-mediated fluxes important? J Geophys Res. 2011;116:G04028.
  • Magarian DM, Russelle MP, Lamb JFS, Blumenthal JM. Bromide as a tracer for nitrate-N uptake in alfalfa herbage. Agron J. 1998;90:651–657. doi: 10.2134/agronj1998.00021962009000050014x
  • Xu S, Leri AC, Myneni SCB, Jaffe PR. Uptake of bromide by two wetland plants (Typha latifolia L. and Phragmites australis (Cav.) Trin.ex Steud). Environ Sci Technol. 2004;38:5642–5648. doi: 10.1021/es049568o
  • Schuurkes JAAR, Kok CJ, Hartog CD. Ammonium and nitrate uptake by aquatic plants from poorly buffered and acidified waters. Aquat Bot. 1986;24:131–146. doi: 10.1016/0304-3770(86)90093-8
  • Koppisch D, Schulze ED, Gebauer G. 15N-labelled ammonium and nitrate uptake by the grass Calamagrostis vilosa. Isot Environ Health Stud. 1993;29:77–85. doi: 10.1080/10256019308046138
  • Jackson RB, Mooney HA, Schulze ED. A global budget for fine root biomass, surface area, and nutrient contents. Proc Natl Acad Sci USA. 1997;94:7362–7366. doi: 10.1073/pnas.94.14.7362
  • Moore TR, Bubier JL, Frolking SE, Lafleur PM, Roulet NT. Plant biomass and production and CO2 exchange in ombotrophic bog. J Ecol. 2002;90:25–36. doi: 10.1046/j.0022-0477.2001.00633.x
  • Neatrour MA, Jones RH, Golladay SW. Correlations between soil nutrient availability and fine-root biomass at two spatial scales in forested wetlands with contrasting hydrological regimes. Can J For Res. 2005;35:2934–2941. doi: 10.1139/x05-217
  • Tylova-Munzarova E, Lorenzen B, Brix H, Votrubova O. The effects of and on growth, resource allocation and nitrogen uptake kinetics of Phragmites australis and Glyceria maxima. Aquat Bot. 2005;81:326–342. doi: 10.1016/j.aquabot.2005.01.006
  • Rappoldt C, Pieters GJM, Adema EB, Baaijens GJ, Grootjans AP, van Duijn CJ. Buoyancy-driven flow in a peat moss layer as a mechanism for solute transport. PNAS. 2003;100:14937–14942. doi: 10.1073/pnas.1936122100
  • Adema EB, Baaijens GJ, van Belle J, Rappoldt C, Grootjans AP, Smolders AJP. Field evidence for buoyancy-driven water flow in a Sphagnum dominated peat bog. J Hydrol. 2006;327:226–234. doi: 10.1016/j.jhydrol.2005.11.019
  • Morris JT. Effects of nitrogen loading on wetland ecosystems with particular reference to atmospheric deposition. Annu Rev Ecol Syst. 1991;22:257–279. doi: 10.1146/annurev.es.22.110191.001353
  • Letey J, Jury WA, Hadas A, Valoras N. Gas diffusion as a factor in laboratory incubation studies on denitrification. J Environ Qual. 1980;9:223–227. doi: 10.2134/jeq1980.00472425000900020012x
  • Lindau CW, Patrick WH, Patrick JR, Delaune RD, Reddy KR, Bollich PK. Entrapment of nitrogen-15–dinitrogen during soil denitrification. Soil Sci Soc Am J. 1988;52:538–539. doi: 10.2136/sssaj1988.03615995005200020045x
  • Well R, Myrold DD. Laboratory evaluation of a new method for in situ measurement of denitrification in water-saturated soils. Soil Biol Biochem. 1999;31:1109–1119. doi: 10.1016/S0038-0717(99)00029-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.