169
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Changes in δ13C of dark respired CO2 and organic matter of different organs during early ontogeny in peanut plants

, , , , &
Pages 93-108 | Received 30 Sep 2014, Accepted 07 Jan 2015, Published online: 23 Feb 2015

References

  • Cernusak LA, Tcherkez G, Keitel C, Cornwell WK, Santiago LS, Knohl A, Barbour MM, Williams DG, Reich PB, Ellsworth DS, Dawson TE, Griffiths HG, Farquhar GD, Wright IJ. Why are non-photosynthetic tissues generally 13C enriched compared with leaves in C3 plants? Review and synthesis of current hypotheses. Funct Plant Biol. 2009;36:199–213. doi: 10.1071/FP08216
  • Ghashghaie J, Badeck FW. Tansley review: opposite carbon isotope fractionation during dark respiration in roots vs leaves – a review. New Phytol. 2014;201:751–769. doi: 10.1111/nph.12563
  • Werner C, Gessler A. Diel variations in the carbon isotope composition of respired CO2 and associated carbon sources – a review of dynamics and mechanisms. Biogeosciences. 2011;8:2437–2459. doi: 10.5194/bg-8-2437-2011
  • Badeck FW, Tcherkez G, Nogués S, Piel C, Ghashghaie J. Post-photosynthetic fractionation of stable carbon isotopes between plant organs – a widespread phenomenon. Rapid Commun Mass Sp. 2005;19:1381–1391. doi: 10.1002/rcm.1912
  • Badeck FW, Fontaine JL, Dumas F, Ghashghaie J. Consistent patterns in leaf lamina and leaf vein C isotope composition across 10 herbs and tree species. Rapid Commun Mass Sp. 2009;23:2455–2460. doi: 10.1002/rcm.4054
  • Bathellier C, Badeck FW, Couzi P, Harscoët S, Mauve C, Ghashghaie J. Divergence in δ13C of dark respired CO2 and bulk organic matter occurs during the transition between heterotrophy and autotrophy in Phaseolus vulgaris L. plants. New Phytol. 2008;177:406–418.
  • Lamade E, Setyio IE, Girard S, Ghashghaie J. Changes in 13C/12C of oil palm leaves to understand the use of carbon during their passage from heterotrophy to autotrophy. Rapid Commun Mass Sp. 2009;23:2586–2596. doi: 10.1002/rcm.4169
  • Ghashghaie J, Badeck FW, Lanigan G, Nogués S, Tcherkez G, Deléens E, Cornic G, Griffiths H. Carbon isotope discrimination during dark respiration and photorespiration in C3 plants. Phytochem Rev. 2003;2:145–161. doi: 10.1023/B:PHYT.0000004326.00711.ca
  • Rossmann A, Butzenlechner M, Schmidt H-L. Evidence for a non-statistical carbon isotope distribution in natural glucose. Plant Physiol. 1991;96:609–614. doi: 10.1104/pp.96.2.609
  • Tcherkez G, Nogués S, Bleton J, Cornic G, Badeck FW, Ghashghaie J. Metabolic origin of carbon isotope composition of leaf dark-respired CO2 in French bean. Plant Physiol. 2003;131:237–244. doi: 10.1104/pp.013078
  • Bathellier C, Tcherkez G, Bligny R, Gout E, Cornic G, Ghashghaie J. Metabolic origin of δ13C of respired CO2 from the roots of Phaseolus vulgaris. New Phytol. 2009;181:387–399. doi: 10.1111/j.1469-8137.2008.02679.x
  • Gessler A, Tcherkez G, Karyanto O, Keitel C, Ferrio JP, Ghashghaie J, Kreuzwieser J, Farquhar GD. On the metabolic origin of the carbon isotope composition of CO2 evolved from darkened light-adapted leaves in Ricinus communis. New Phytol. 2009;181:374–386. doi: 10.1111/j.1469-8137.2008.02672.x
  • Barbour MM, McDowell NG, Tcherkez G, Bickford CP, Hanson DT. A new measurement technique reveals rapid post-illumination changes in the carbon isotope composition of leaf-respired CO2. Plant Cell Environ. 2007;30:469–482. doi: 10.1111/j.1365-3040.2007.01634.x
  • Luettge U. Fat – carbohydrate – protein: storage in plant seeds. Lipid Technol. 2013;25:79–81. doi: 10.1002/lite.201300266
  • Sebei K, Gnouma A, Herchi W, Sakouhi F, Boukhchina S. Lipids, proteins, phenolic composition, antioxidant and antibacterial activities of seeds of peanuts (Arachis hypogaea L.) cultivated in Tunisia. Biol Res. 2013;46:257–263. doi: 10.4067/S0716-97602013000300006
  • Eastmond PJ, Graham IA. Re-examining the role of the glyoxylate cycle in oilseeds. Trends Plant Sci. 2001;6:72–77. doi: 10.1016/S1360-1385(00)01835-5
  • Voet D, Voet JG. Biochemistry. 4th ed. Hoboken, NJ: Wiley; 2011. Chapter 23, Other pathways of carbohydrate metabolism; p. 871–881.
  • Falk KL, Behal RH, Xiang CB, Oliver DJ. Metabolic bypass of the tricarboxylic acid cycle during lipid mobilization in germinating oilseeds – Regulation of NAD(+)-dependent isocitrate dehydrogenase versus fumarase. Plant Physiol. 1998;117:473–481. doi: 10.1104/pp.117.2.473
  • Smith BN. Carbon isotope ratios of respired CO2 from castor bean, peanut, pea, radish, squash, sunflower and wheat seedlings. Plant Cell Physiol. 1971;12:451–455.
  • Luo Y-H, da Silveira L, Sternberg L. Alterations in δ13C values of seedling cellulose associated with respiration during germination. Phytochemistry. 1994;35:877–880. doi: 10.1016/S0031-9422(00)90630-7
  • Meier U. Growth stages of mono-and dicotyledonous plants: BBCH Monograph. Federal Biological Research Centre for Agriculture and Forestry; 2001. p. 158. Available from: http://www.bba.de/veroeff/bbch/bbcheng.pdf
  • R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2014. Available from: http://www.R-project.org/
  • Botha FC, Potgieter GP, Botha AM. Respiratory metabolism and gene-expression during seed-germination. Plant Growth Regul. 1992;11:211–224. doi: 10.1007/BF00024560
  • Rosental L, Nonogaki H, Fait A. Activation and regulation of primary metabolism during seed germination. Seed Sci Res. 2014;24:1–15. doi: 10.1017/S0960258513000391
  • Jacks TJ, Yatsu LY, Altschul AM. Isolation and characterization of peanut spherosomes. Plant Physiol. 1967;42:585–597. doi: 10.1104/pp.42.4.585
  • Allfrey JM, Northcote DH. Effects of axis and plant hormones on mobilization of storage materials in ground-nut (Arachis hypogaea) during germination. New Phytol. 1977;78:547–563. doi: 10.1111/j.1469-8137.1977.tb02158.x
  • Basha SMM, Cherry JP. Proteolytic-enzyme activity and storage protein degradation in cotyledons of germinating peanut (Arachis hypogaea L.) seeds. J Agric Food Chem. 1978;26:229–234. doi: 10.1021/jf60215a045
  • Tcherkez G, Farquhar GD, Badeck FW, Ghashghaie J. Theoretical considerations about carbon isotope distribution in glucose of C3 plants. Funct Plant Biol. 2004;31:857–877. doi: 10.1071/FP04053
  • Gilbert A, Robins RJ, Remaud GS, Tcherkez G. Intramolecular 13C pattern in hexoses from autotrophic and heterotrophic C3 plant tissues. Proc Nat Acad Sci USA. 2012;109:18204–18209. doi: 10.1073/pnas.1211149109
  • Monson KD, Hayes JM. Biosynthetic control of the natural abundance of C-13 at specific positions within fatty-acids in Escherichia coli – evidence regarding the coupling of fatty-acid and phospholipid-synthesis. J Biol Chem. 1980;255:1435–1441.
  • Vogler EA, Hayes JM. Carbon isotopic compositions of carboxyl groups of biosynthesized fatty acids. Phys Chem Earth. 1980;12:697–704. doi: 10.1016/0079-1946(79)90150-2
  • Ballentine DC, Macko SA, Turekian VC. Variability of stable carbon isotopic compositions in individual fatty acids from combustion of C4 and C3 plants: implications for biomass burning. Chem Geol. 1998;152:151–161. doi: 10.1016/S0009-2541(98)00103-X
  • Chikaraishi Y, Naraoka H, Poulson SR. Carbon and hydrogen isotopic fractionation during lipid biosynthesis in a higher plant (Cryptomeria japonica). Phytochemistry. 2004;65:323–330. doi: 10.1016/j.phytochem.2003.12.003
  • Chikaraishi Y, Naraoka H, Poulson SR. Hydrogen and carbon isotopic fractionations of lipid biosynthesis among terrestrial (C3, C4 and CAM) and aquatic plants. Phytochemistry. 2004;65:1369–1381. doi: 10.1016/j.phytochem.2004.03.036
  • Huang Y, Eglinton G, Ineson P, Bol R, Harkness DD. The effects of nitrogen fertilisation and elevated CO2 on the lipid biosynthesis and carbon isotopic discrimination in birch seedlings (Betula pendula). Plant Soil. 1999;216:35–45. doi: 10.1023/A:1004771431093
  • Wiesenberg GLB, Schwarzbauer J, Schmidt MWI, Schwark L. Plant and soil lipid modification under elevated atmospheric CO2 conditions: II. Stable carbon isotopic values (δ13C) and turnover. Organ Geochem. 2008;39:103–117. doi: 10.1016/j.orggeochem.2007.09.006
  • Bowsher C, Steer M, Tobin A. Plant biochemistry. 1st ed. New York: Garland Science, Taylor & Francis Group, LLC; 2008. p. 329–333.
  • Taiz L, Zeiger E. Plant physiology. 4th ed. Sunderland, McA: Sibauer Associates; 2006. Chapter 11, Respiration and lipid metabolism. p. 253–288.
  • Schmidt H-L. Fundamentals and systematics of the non-statistical distributions of isotopes in natural compounds. Naturwissenschaften. 2003;90:537–552. doi: 10.1007/s00114-003-0485-5
  • Melzer E, O'Leary MH. Aspartic-acid synthesis in C3 plants. Planta. 1991;185:368–371. doi: 10.1007/BF00201058
  • Hayes JM. Fractionation of the isotopes of carbon and hydrogen in biosynthetic processes. In: Valley JW, Cole DR, editors. Stable isotope geochemistry. Vol. 43, reviews in mineralogy and geochemistry. Washington, DC: Mineralogical Society of America; 2001. p. 225–278.
  • Abelson PH, Hoering TC. Carbon isotope fractionation of amino acids by photosynthetic organisms. Proc Nat Acad Sci USA. 1961;47:623–632. doi: 10.1073/pnas.47.5.623
  • Gleixner G, Danier HJ, Werner RA, Schmidt H-L. Correlations between 13C content of primary and secondary plant products in different cell compartments and that in decomposing basidiomycetes. Plant Physiol. 1993;102:1287–1290.
  • Gleixner G, Scrimgeour C, Schmidt H-L, Viola R. Stable isotope distribution in the major metabolites of source and sink organs of Solanum tuberosum L. – A powerful tool in the study of metabolic partitioning in intact plants. Planta. 1998;207:241–245. doi: 10.1007/s004250050479
  • Schmidt H-L, Gleixner G. Carbon isotope effect on key reactions in plant metabolism and 13C-patterns in natural compounds. In: Griffiths H, editor. Stable isotopes, integration of biological, ecological and geochemical processes. Abingdon: BIOS Scientific Publishers; 1998. p. 13–25.
  • Butzenlechner M, Thimet S, Kempe K, Kexel H, Schmidt H-L. Inter- and intramolecular isotopic correlations in some cyanogenic glycosides and glucosinolates and their practical importance. Phytochemistry. 1996;43:585–592. doi: 10.1016/0031-9422(96)00290-7
  • Melzer A, Schmidt H-L. Carbon isotope effects on the pyruvate dehydrogenase reaction and their importance for relative carbon-13 depletion in lipids. J Biol Chem. 1987;262:8159–8164.
  • Monson KD, Hayes JM. Biosynthetic control of the natural abundance of carbon 13 at specific positions within fatty-acids in Saccharomyces cerevisiae – Isotopic fractionations in lipid synthesis as evidence for peroxisomal regulation. J Biol Chem. 1982;257:5568–5575.
  • Monson KD, Hayes JM. Carbon isotopic fractionation in the biosynthesis of bacterial fatty-acids – Ozonolysis of unsaturated fatty-acids as a means of determining the intramolecular distribution of carbon isotopes. Geochim Cosmochim Acta. 1982;46:139–149. doi: 10.1016/0016-7037(82)90241-1
  • Weilacher T, Gleixner G, Schmidt H-L. Carbon isotope pattern in purine alkaloids a key to isotope discriminations in C1 compounds. Phytochemistry. 1996;41:1073–1077. doi: 10.1016/0031-9422(95)00757-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.