158
Views
1
CrossRef citations to date
0
Altmetric
Articles

Record of Nile seasonality in Nubian neonates

, , , , , , , & show all
Pages 223-242 | Received 29 Mar 2016, Accepted 30 Jun 2016, Published online: 22 Sep 2016

References

  • Bonnet C, Hinkel FW, Kendall T. Soudan: royaumes sur le Nil [Sudan: kingdoms on the Nile]. Paris: Flammarion; 1997. Français.
  • Reinold J. Archéologie au Soudan: les civilisations de Nubie [Archaeology in Sudan: the civilizations of Nubia]. Paris: Editions Errance; 2000. Français.
  • Bonnet C, Valbelle D. Des pharaons venus d’Afrique: la cachette de Kerma [Pharaohs from Africa: the hiding place of Kerma]. Paris: Citadelles & Mazenod; 2005. Français.
  • Baud M. Méroé: un empire sur le Nil [Meroe: an empire on the Nile]. Paris: Musée du Louvre; 2010. Français.
  • Adams WY. Continuity and change in Nubian cultural history. Sudan Notes Rec. 1967;48:18–21.
  • Butzer KW. Early hydraulic civilization in Egypt: a study in cultural ecology. Chicago (IL): University of Chicago Press; 1976.
  • Haug GH, Günther D, Peterson LC, et al. Climate and the collapse of Maya civilization. Science. 2003;299:1731–1735. doi: 10.1126/science.1080444
  • Büntgen U, Tegel W, Nicolussi K, et al. 2500 years of European climate variability and human susceptibility. Science. 2011;331:578–582. doi: 10.1126/science.1197175
  • Dansgaard W. Stable isotopes in precipitation. Tellus. 1964;16:436–468. doi: 10.1111/j.2153-3490.1964.tb00181.x
  • Craig H, Gordon LI. Deuterium and oxygen 18 variations in the ocean and the marine atmosphere. In: Tongiorgi E, editor. Stable isotopes in oceanographic studies and paleotemperatures. Pisa: Laboratorio di Geologia Nucleare; 1965. p. 9–130.
  • Schwarcz HP, Harmon RS, Thompson P. Stable isotope studies of fluid inclusions in speleothems and their paleoclimatic significance. Geochim Cosmochim Acta. 1976;40:657–665. doi: 10.1016/0016-7037(76)90111-3
  • Blisniuk PM, Stern LA. Stable isotope paleoaltimetry: a critical review. Am J Sci. 2005;305:1033–1074. doi: 10.2475/ajs.305.10.1033
  • Mulch A, Chamberlain CP. Stable isotope paleoaltimetry in orogenic belts–the silicate record in surface and crustal geological archives. Rev Mineral Geochem. 2007;66:89–118. doi: 10.2138/rmg.2007.66.4
  • Rigaudier T, Lécuyer C, Gardien V, et al. The record of temperature, wind velocity and air humidity in the δD and δ18O of water inclusions in synthetic and Messinian halites. Geochim Cosmochim Acta. 2011;75:4637–4652. doi: 10.1016/j.gca.2011.05.034
  • Longinelli A. Oxygen isotopes in mammal bone phosphate: a new tool for paleohydrological and paleoclimatological research? Geochim Cosmochim Acta. 1984;48:385–390. doi: 10.1016/0016-7037(84)90259-X
  • Fricke HC, O’Neil JR. Inter-and intra-tooth variation in the oxygen isotope composition of mammalian tooth enamel phosphate: implications for palaeoclimatological and palaeobiological research. Palaeogeogr Palaeoclimatol Palaeoecol. 1996;126:91–99. doi: 10.1016/S0031-0182(96)00072-7
  • MacFadden BJ, Higgins P. Ancient ecology of 15-million-year-old browsing mammals within C3 plant communities from Panama. Oecologia. 2004;140:169–182. doi: 10.1007/s00442-004-1571-x
  • Bernard A, Daux V, Lécuyer C, et al. Pleistocene seasonal temperature variations recorded in the δ18O of Bison priscus teeth. Earth Planet Sci Lett. 2009;283:133–143. doi: 10.1016/j.epsl.2009.04.005
  • Daux V, Lécuyer C, Héran M-A, et al. Oxygen isotope fractionation between human phosphate and water revisited. J Hum Evol. 2008;55:1138–1147. doi: 10.1016/j.jhevol.2008.06.006
  • Kohn MJ. Predicting animal δ18O: accounting for diet and physiological adaptation. Geochim Cosmochim Acta. 1996;60:4811–4829. doi: 10.1016/S0016-7037(96)00240-2
  • Kohn MJ, Schoeninger MJ, Valley JW. Herbivore tooth oxygen isotope compositions: effects of diet and physiology. Geochim Cosmochim Acta. 1996;60:3889–3896. doi: 10.1016/0016-7037(96)00248-7
  • Sponheimer M, Lee-Thorp JA. Oxygen isotopes in enamel carbonate and their ecological significance. J Archaeol Sci. 1999;26:723–728. doi: 10.1006/jasc.1998.0388
  • White C, Longstaffe FJ, Law KR. Exploring the effects of environment, physiology and diet on oxygen isotope ratios in ancient Nubian bones and teeth. J Archaeol Sci. 2004;31:233–250. doi: 10.1016/j.jas.2003.08.007
  • Turner BL, Edwards JL, Quinn EA, et al. Age-related variation in isotopic indicators of diet at medieval Kulubnarti, Sudanese Nubia. Int J Osteoarchaeol. 2007;17:1–25. doi: 10.1002/oa.862
  • Stepańczak B, Szostek K, Pawlyta J. The human bone oxygen isotope ratio changes with aging. Geochronometria. 2014;41:147–159. doi: 10.2478/s13386-013-0146-1
  • Williams JS, White CD, Longstaffe FJ. Trophic level and macronutrient shift effects associated with the weaning process in the postclassic Maya. Am J Phys Anthropol. 2005;128:781–790. doi: 10.1002/ajpa.20229
  • Britton K, Fuller BT, Tütken T, et al. Oxygen isotope analysis of human bone phosphate evidences weaning age in archaeological populations. Am J Phys Anthropol. 2015;157:226–241. doi: 10.1002/ajpa.22704
  • Wright LE, Schwarcz HP. Stable carbon and oxygen isotopes in human tooth enamel: identifying breastfeeding and weaning in prehistory. Am J Phys Anthropol. 1998;106:1–18. doi: 10.1002/(SICI)1096-8644(199805)106:1<1::AID-AJPA1>3.0.CO;2-W
  • Sellen DW. Evolution of infant and young child feeding: implications for contemporary public health. Annu Rev Nutr. 2007;27:123–148. doi: 10.1146/annurev.nutr.25.050304.092557
  • Humphrey LT. Weaning behaviour in human evolution. Semin Cell Dev Biol. 2010;21:453–461. doi: 10.1016/j.semcdb.2009.11.003
  • Dettwyler KA, Fishman C. Infant feeding practices and growth. Annu Rev Anthropol. 1992;21:171–204. doi: 10.1146/annurev.an.21.100192.001131
  • Macadam PS, Dettwyler KA. Breastfeeding: biocultural perspectives. New York: Walter de Gruyter; 1995.
  • Geus F. Geomorphology and prehistory of Sai Island (Nubia): report on a current research project. In: Krzyzaniak L, Kroeper K, Kubasiewicz M, editors. Recent Research into the stone age of northeastern Africa. Vol. 7, Studies in African archaeology. Poznan: Poznan Archaeological Museum; 2000. p. 119–128.
  • Geus F. Saï 1993–1995. Archéologie Nil Moyen. 1995;7:79–98.
  • Geus F. Saï 1996–1997. Archéologie Nil Moyen. 1998;8:85–126.
  • Geus F. Saï 1998–1999. Archéologie Nil Moyen. 2002;9:95–134.
  • Geus F. Saï 2000–2002. Archéologie Nil Moyen. 2006;10:87–134.
  • Murail P, Maureille B, Peresinotto D, et al. An infant cemetery of the Classic Kerma period (1750–1500 BC, Island of Saï, Sudan). Antiquity. 2004;78:267–277.
  • Maureille B, Peressinotto D, Murail P, et al. La nécropole 8-B-51 de l’île de Saï (Province du Nord, Soudan) [The 8-B-51 necropolis of the Sai island (Northern Province, Sudan)]. Archéologie Nil Moyen. 2006;10:181–202. Français.
  • Crowson RA, Showers WJ, Wright EK, et al. Preparation of phosphate samples for oxygen isotope analysis. Anal Chem. 1991;63:2397–2400. doi: 10.1021/ac00020a038
  • Lécuyer C, Grandjean P, O’Neil JR, et al. Thermal excursions in the ocean at the Cretaceous—Tertiary boundary (northern Morocco): δ18O record of phosphatic fish debris. Palaeogeogr Palaeoclimatol Palaeoecol. 1993;105:235–243. doi: 10.1016/0031-0182(93)90085-W
  • Fourel F, Martineau F, Lécuyer C, et al. 18O/16O ratio measurements of inorganic and organic materials by elemental analysis–pyrolysis–isotope ratio mass spectrometry continuous-flow techniques. Rapid Commun Mass Spectrom. 2011;25:2691–2696. doi: 10.1002/rcm.5056
  • Halas S, Skrzypek G, Meier-Augenstein W, et al. Inter-laboratory calibration of new silver orthophosphate comparison materials for the stable oxygen isotope analysis of phosphates. Rapid Commun Mass Spectrom. 2011;25:579–584. doi: 10.1002/rcm.4892
  • Chenery C, Müldner G, Evans J, et al. Strontium and stable isotope evidence for diet and mobility in Roman Gloucester, UK. J Archaeol Sci. 2010;37:150–163. doi: 10.1016/j.jas.2009.09.025
  • Shemesh A. Crystallinity and diagenesis of sedimentary apatites. Geochim Cosmochim Acta. 1990;54:2433–2438. doi: 10.1016/0016-7037(90)90230-I
  • Weiner S, Bar-Yosef O. States of preservation of bones from prehistoric sites in the Near East: a survey. J Archaeol Sci. 1990;17:187–196. doi: 10.1016/0305-4403(90)90058-D
  • Wright LE, Schwarcz HP. Infrared and isotopic evidence for diagenesis of bone apatite at Dos Pilas, Guatemala: palaeodietary implications. J Archaeol Sci. 1996;23:933–944. doi: 10.1006/jasc.1996.0087
  • Touzeau A, Blichert-Toft J, Amiot R, et al. Egyptian mummies record increasing aridity in the Nile valley from 5500 to 1500 yr before present. Earth Planet Sci Lett. 2013;375:92–100. doi: 10.1016/j.epsl.2013.05.014
  • Alqahtani SJ, Hector MP, Liversidge HM. Brief communication: the London atlas of human tooth development and eruption. Am J Phys Anthropol. 2010;142:481–490. doi: 10.1002/ajpa.21258
  • D’Angela D, Longinelli A. Oxygen isotopes in living mammal’s bone phosphate: further results. Chem Geol Isot Geosci Sect. 1990;86:75–82. doi: 10.1016/0168-9622(90)90007-Y
  • White CD, Longstaffe FJ, Spence MW, et al. Teotihuacan state representation at Kaminaljuyú: evidence from oxygen isotopes. J Anthropol Res. 2000;56:535–558. doi: 10.1086/jar.56.4.3630930
  • White CD, Longstaffe FJ, Law KR. Revisiting the Teotihuacan connection at Altun Ha: Oxygen-isotope analysis of Tomb F-8/1. Anc Mesoam. 2001;12:65–72. doi: 10.1017/S0956536101121103
  • Tudge AP. A method of analysis of oxygen isotopes in orthophosphate—its use in the measurement of paleotemperatures. Geochim Cosmochim Acta. 1960;18:81–93. doi: 10.1016/0016-7037(60)90019-3
  • Blake RE, O’Neil JR, Garcia GA. Oxygen isotope systematics of biologically mediated reactions of phosphate: I. Microbial degradation of organophosphorus compounds. Geochim Cosmochim Acta. 1997;61:4411–4422. doi: 10.1016/S0016-7037(97)00272-X
  • Lécuyer C, Grandjean P, Sheppard SM. Oxygen isotope exchange between dissolved phosphate and water at temperatures ≤135°C: inorganic versus biological fractionations. Geochim Cosmochim Acta. 1999;63:855–862. doi: 10.1016/S0016-7037(99)00096-4
  • O’Neil JR, Vennemann TW, McKenzie WF. Effects of speciation on equilibrium fractionations and rates of oxygen isotope exchange between (PO4)aq and H2O. Geochim Cosmochim Acta. 2003;67:3135–3144. doi: 10.1016/S0016-7037(02)00970-5
  • Zazzo A, Lécuyer C, Mariotti A. Experimentally-controlled carbon and oxygen isotope exchange between bioapatites and water under inorganic and microbially-mediated conditions. Geochim Cosmochim Acta. 2004;68:1–12. doi: 10.1016/S0016-7037(03)00278-3
  • Stuart-Williams HLQ, Schwarcz HP, White CD, et al. The isotopic composition and diagenesis of human bone from Teotihuacan and Oaxaca, Mexico. Palaeogeogr Palaeoclimatol Palaeoecol. 1996;126:1–14. doi: 10.1016/S0031-0182(96)00066-1
  • Pucéat E, Reynard B, Lécuyer C. Can crystallinity be used to determine the degree of chemical alteration of biogenic apatites? Chem Geol. 2004;205:83–97. doi: 10.1016/j.chemgeo.2003.12.014
  • Szostek K. Chemical signals and reconstruction of life strategies from ancient human bones and teeth-problems and perspectives. Anthropol Rev. 2009;72:3–30.
  • Lee-Thorp JA, van der Merwe NJ. Aspects of the chemistry of modern and fossil biological apatites. J Archaeol Sci. 1991;18:343–354. doi: 10.1016/0305-4403(91)90070-6
  • Bryant JD, Froelich PN. A model of oxygen isotope fractionation in body water of large mammals. Geochim Cosmochim Acta. 1995;59:4523–4537. doi: 10.1016/0016-7037(95)00250-4
  • Roberts SB, Coward WA, Ewing G, et al. Effect of weaning on accuracy of doubly labeled water method in infants. Am J Physiol–Regul Integr Comp Physiol. 1988;254:R622–R627.
  • Wong WW, Lee LS, Klein PD. Deuterium and oxygen-18 measurements on microliter samples of urine, plasma, saliva, and human milk. Am J Clin Nutr. 1987;45:905–913.
  • Coltrain JB, Janetski JC. The stable and radio-isotope chemistry of southeastern Utah Basketmaker II burials: dietary analysis using the linear mixing model SISUS, age and sex patterning, geolocation and temporal patterning. J Archaeol Sci. 2013;40:4711–4730. doi: 10.1016/j.jas.2013.07.012
  • Schoeller DA. Isotope fractionation: why aren’t we what we eat? J Archaeol Sci. 1999;26:667–673. doi: 10.1006/jasc.1998.0391
  • Franz-Odendaal TA, Lee-Thorp JA, Chinsamy A. Insights from stable light isotopes on enamel defects and weaning in Pliocene herbivores. J Biosci. 2003;28:765–773. doi: 10.1007/BF02708437
  • Dupras TL, Tocheri MW. Reconstructing infant weaning histories at Roman period Kellis, Egypt using stable isotope analysis of dentition. Am J Phys Anthropol. 2007;134:63–74. doi: 10.1002/ajpa.20639
  • Buzon MR, Bowen GJ. Oxygen and carbon isotope analysis of human tooth enamel from the New Kingdom site of Tombos in Nubia. Archaeometry. 2010;52:855–868. doi: 10.1111/j.1475-4754.2009.00503.x
  • Schour I, Massler M. Studies in tooth development: the growth pattern of human teeth. J Am Dent Assoc. 1940;27:1778–1793: 1918–1931. doi: 10.14219/jada.archive.1940.0340
  • Lunt RC, Law DB. A review of the chronology of calcification of deciduous teeth. J Am Dent Assoc. 1974;89:599–606. doi: 10.14219/jada.archive.1974.0446
  • Smith BH. Standards of human tooth formation and dental age assessment. In: Kelley M, Larsen C, editors. Advances in dental anthropology. New York (NY): Wiley–Liss; 1991. p. 143–168.
  • Żolądź JA, Majerczak J, Duda K. Starzenie się a wydolność fizyczna człowieka [Ageing and human physical exercise capacity]. In: Górski J, editor. Fizjologia wysiłku i treningu fizycznego. Warszawa: Wydawnictwo Lekarskie PZWL; 2011. p. 157–164. Polish.
  • Duggan C, Watkins JB, Walker WA. Nutrition in pediatrics: basic science, clinical applications. 4th ed. Shelton (CT): PMPH-USA; 2008.
  • Parfitt AM, Travers R, Rauch F, et al. Structural and cellular changes during bone growth in healthy children. Bone. 2000;27:487–494. doi: 10.1016/S8756-3282(00)00353-7
  • Gallo S, Vanstone CA, Weiler HA. Normative data for bone mass in healthy term infants from birth to 1 year of age. J Osteoporos. 2012;2012:672403. doi: 10.1155/2012/672403
  • Namgung R, Tsang RC. Bone in the pregnant mother and newborn at birth. Clin Chim Acta. 2003;333:1–11. doi: 10.1016/S0009-8981(02)00025-6
  • Onis M. WHO child growth standards based on length/height, weight and age. Acta Paediatr. 2006;95:76–85.
  • Rauch F, Schoenau E. Skeletal development in premature infants: a review of bone physiology beyond nutritional aspects. Arch Dis Child–Fetal Neonatal Ed. 2002;86:F82–F85. doi: 10.1136/fn.86.2.F82
  • McDevitt H, Ahmed SF. Quantitative ultrasound assessment of bone health in the neonate. Neonatology. 2007;91:2–11. doi: 10.1159/000096965
  • Williford A, Pare L, Carlson G. Bone mineral metabolism in the neonate: calcium, phosphorus, magnesium, and alkaline phosphatase. Neonatal Netw. 2008;27:57–63. doi: 10.1891/0730-0832.27.1.57
  • Rack B, Lochmüller EM, Janni W, et al. Ultrasound for the assessment of bone quality in preterm and term infants. J Perinatol. 2012;32:218–226. doi: 10.1038/jp.2011.82
  • Abrams SA. Calcium turnover and nutrition through the life cycle. Proc Nutr Soc. 2001;60:283–289.
  • Namgung R, Tsang RC, Lee C, et al. Low total body bone mineral content and high bone resorption in Korean winter-born versus summer-born newborn infants. J Pediatr. 1998;132:421–425. doi: 10.1016/S0022-3476(98)70013-7
  • Manifold BM. Bone mineral density in children from anthropological and clinical sciences: a review. Anthropol Rev. 2014;77:111–135.
  • Schwarcz HP, White CD. The grasshopper or the ant?: cultigen-use strategies in ancient Nubia from C-13 analyses of human hair. J Archaeol Sci. 2004;31:753–762. doi: 10.1016/j.jas.2003.11.004
  • Hedges RE, Clement JG, Thomas CDL, et al. Collagen turnover in the adult femoral mid-shaft: modelled from anthropogenic radiocarbon tracer measurements. Am J Phys Anthropol. 2007;133:808–816. doi: 10.1002/ajpa.20598
  • White CD. Isotopic determination of seasonality in diet and death from Nubian mummy hair. J Archaeol Sci. 1993;20:657–666. doi: 10.1006/jasc.1993.1040
  • Warinner C, Tuross N. Alkaline cooking and stable isotope tissue–diet spacing in swine: archaeological implications. J Archaeol Sci. 2009;36:1690–1697. doi: 10.1016/j.jas.2009.03.034
  • Pasteris JD, Wopenka B, Freeman JJ, et al. Lack of OH in nanocrystalline apatite as a function of degree of atomic order: implications for bone and biomaterials. Biomaterials. 2004;25:229–238. doi: 10.1016/S0142-9612(03)00487-3
  • Smith CE, Chong DL, Bartlett JD, et al. Mineral acquisition rates in developing enamel on maxillary and mandibular incisors of rats and mice: implications to extracellular acid loading as apatite crystals mature. J Bone Miner Res. 2005;20:240–249. doi: 10.1359/JBMR.041002
  • Luz B, Kolodny Y, Horowitz M. Fractionation of oxygen isotopes between mammalian bone-phosphate and environmental drinking water. Geochim Cosmochim Acta. 1984;48:1689–1693. doi: 10.1016/0016-7037(84)90338-7
  • Farah EA, Mustafa EMA, Kumai H. Sources of groundwater recharge at the confluence of the Niles, Sudan. Environ Geol. 2000;39:667–672. doi: 10.1007/s002540050479
  • Said R. The Nile river: geology, hydrology, and utilization. Oxford: Pergamon Press; 1993.
  • Vrbka P, Thorweihe U. Hydrogeology of the Wadi El Milk-Wadi Muqaddam area, northern Sudan. In: Thorweihe U, Schandelmeier H, editors. Geoscientific research in northeast Africa. Rotterdam: Balkema; 1993. p. 693–698.
  • Darling WG, Bath AH, Gibson JJ, et al. Isotopes in water. In: Leng MJ, editor. Isotopes in palaeoenvironmental research. Dordrecht: Springer Netherlands; 2006. p. 1–66.
  • Cockerton HE, Street-Perrott FA, Leng MJ, et al. Stable-isotope (H, O, and Si) evidence for seasonal variations in hydrology and Si cycling from modern waters in the Nile Basin: implications for interpreting the Quaternary record. Quat Sci Rev. 2013;66:4–21. doi: 10.1016/j.quascirev.2012.12.005
  • IAEA/WMO. Global Network for Isotopes in Precipitation. GNIP Database. 2006; Available from: http://www.iaea.org/water
  • Darling WG, Edmunds WM, Kinniburgh DG, et al. Sources of recharge to the basal Nubian Sandstone aquifer, Butana region, Sudan. International Symposium on Isotope Techniques in Water Resources Development. IAEA, Vienna, 1987. p. 205–224.
  • Iacumin P, Bocherens H, Mariotti A, et al. An isotopic palaeoenvironmental study of human skeletal remains from the Nile Valley. Palaeogeogr Palaeoclimatol Palaeoecol. 1996;126:15–30. doi: 10.1016/S0031-0182(96)00067-3
  • Prowse TL, Schwarcz HP, Garnsey P, et al. Isotopic evidence for age-related immigration to imperial Rome. Am J Phys Anthropol. 2007;132:510–519. doi: 10.1002/ajpa.20541
  • Armitage SJ, Bristow CS, Drake NA. West African monsoon dynamics inferred from abrupt fluctuations of Lake Mega-Chad. Proc Natl Acad Sci. 2015;112:8543–8548. doi: 10.1073/pnas.1417655112
  • Blanchet CL, Tjallingii R, Frank M, et al. High-and low-latitude forcing of the Nile River regime during the Holocene inferred from laminated sediments of the Nile deep-sea fan. Earth Planet Sci Lett. 2013;364:98–110. doi: 10.1016/j.epsl.2013.01.009
  • Marshall MH, Lamb HF, Huws D, et al. Late Pleistocene and Holocene drought events at Lake Tana, the source of the Blue Nile. Glob Planet Change. 2011;78:147–161. doi: 10.1016/j.gloplacha.2011.06.004
  • Marchant R, Hooghiemstra H. Rapid environmental change in African and South American tropics around 4000 years before present: a review. Earth-Sci Rev. 2004;66:217–260. doi: 10.1016/j.earscirev.2004.01.003
  • Costa K, Russell J, Konecky B, et al. Isotopic reconstruction of the African humid period and Congo air boundary migration at Lake Tana, Ethiopia. Quat Sci Rev. 2014;83:58–67. doi: 10.1016/j.quascirev.2013.10.031
  • Gebru T, Eshetu Z, Huang Y, et al. Holocene palaeovegetation of the Tigray Plateau in northern Ethiopia from charcoal and stable organic carbon isotopic analyses of gully sediments. Palaeogeogr Palaeoclimatol Palaeoecol. 2009;282:67–80. doi: 10.1016/j.palaeo.2009.08.011
  • Hoelzmann P, Keding B, Berke H, et al. Environmental change and archaeology: lake evolution and human occupation in the Eastern Sahara during the Holocene. Palaeogeogr Palaeoclimatol Palaeoecol. 2001;169:193–217. doi: 10.1016/S0031-0182(01)00211-5
  • Kuper R, Kröpelin S. Climate-controlled Holocene occupation in the Sahara: motor of Africa’s evolution. Science. 2006;313:803–807. doi: 10.1126/science.1130989

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.