212
Views
10
CrossRef citations to date
0
Altmetric
Articles

Evaluation of the effect of the 2011 Tsunami on coastal forests by means of multiple isotopic analyses of tree-rings

, , , , , , & show all
Pages 494-507 | Received 25 Nov 2017, Accepted 28 May 2018, Published online: 12 Jul 2018

References

  • Murai H, Ishikawa M, Endo J, et al., editors. [The coastal forest in Japan: its multiple functions and use]. Tokyo: Soft Science Tokyo; 1992. Japanese.
  • Iimura K, Tanaka N. Numerical simulation estimating effects of tree density distribution in coastal forest on tsunami mitigation. Ocean Eng. 2012;54:223–232. doi: 10.1016/j.oceaneng.2012.07.025
  • Hoshino D. [Coastal forest and town damage in Iwate Prefecture, Japan, following the 2011 Tohoku earthquake tsunami]. J Jap Forest Soc. 2012;94:243–246. Japanese. doi: 10.4005/jjfs.94.243
  • Irtem E, Gedik N, Kabdasli MS, et al. Coastal forest effects on tsunami run-up heights. Ocean Eng. 2009;36:313–320. doi: 10.1016/j.oceaneng.2008.11.007
  • Roy K, Sasada K, Kohno E. Salinity status of the 2011 Tohoku-oki tsunami affected agricultural lands in northeast Japan. Int Soil Water Conserv Res. 2014;2(2):40–50. doi: 10.1016/S2095-6339(15)30005-8
  • Ono K, Nakamura K, Hirai K. [Soil conditions in seawater-inundated coastal forests damaged by the 2011 mega-tsunami following the Tohoku earthquake along the eastern Pacific coast of Japan]. Jap J Forest Environ. 2014;56:37–48. Japanese.
  • Yoshii T, Imamura M, Matsuyama M, et al. Salinity in soils and tsunami deposits in areas affected by the 2010 Chile and 2011 Japan tsunamis. Pure Appl Geophys. 2012;170(6-8):1047–1066. doi: 10.1007/s00024-012-0530-4
  • Goto K, Sugawara D, Ikema S, et al. Sedimentary processes associated with sand and boulder deposits formed by the 2011 Tohoku-oki tsunami at Sabusawa Island, Japan. Sediment Geol. 2012;282:175–187. doi: 10.1016/j.sedgeo.2012.06.002
  • Lopez CML, Mizota C, Yamanaka T, et al. Temporal changes in tree-ring nitrogen of Pinus thunbergii trees exposed to Black-tailed Gull (Larus crassirostris) breeding colonies. Appl Geochem. 2010;25:1699–1702. doi: 10.1016/j.apgeochem.2010.08.017
  • Mizota C, Lopez CML, Yamanaka T, et al. Differential response of two Pinus spp. to avian nitrogen input as revealed by nitrogen isotope analysis for tree-rings. Isot Environ Health Stud. 2011;47:62–70. doi: 10.1080/10256016.2011.545126
  • Zhu J, Gonda Y, Yu L, et al. Regeneration of a coastal pine (Pinus thunbergii Parl.) forest 11 years after thinning, Niigata, Japan. PLoS ONE. 2012;7(10):e47593), doi:10.1371/journal.pone.0047593.
  • Ono K, Hirai K. [Effect of natural rainfall on desalination of seawater-inundated soil in forest damaged by 2011 Heisei Sanriku Mega-tsunami following Tohoku earthquake of the eastern Pacific coast]. Bull. FFPRI. 2013;12(1):41–47. Japanese.
  • Nakamura K. [The tsunami-damage of seacoast pine forest and planting experiment for implementing reforestation]. Jap J Forest Environ. 2014;56(1):21–26. Japanese.
  • Kubota T, Kagawa A, Kodama N. Effects of salt water immersion caused by a tsunami on δ13C and δ18O values of Pinus thunbergii tree-ring cellulose. Ecol Res. 2017;32:271–277. doi: 10.1007/s11284-017-1437-4
  • Ferrio JP, Florit A, Vega A, et al. Δ13c and tree-ring width reflect different drought responses in Quercus ilex and Pinus halepensis. Oecologia. 2003;137:512–518. doi: 10.1007/s00442-003-1372-7
  • McCarroll D, Loader NJ. Stable isotopes in tree rings. Quat Sci Rev. 2004;23:771–801. doi: 10.1016/j.quascirev.2003.06.017
  • Fardusi MJ, Ferrio JP, Comas C, et al. Intra-specific association between carbon isotope composition and productivity in woody plants: a meta-analysis. Plant Sci. 2016;251:110–118. doi: 10.1016/j.plantsci.2016.04.005
  • del Castillo J, Voltas J, Ferrio JP. Carbon isotope discrimination, radial growth, and NDVI share spatiotemporal responses to precipitation in Aleppo pine. Trees. 2015;29:223–233. doi: 10.1007/s00468-014-1106-y
  • Loader NJ, Santillo PM, Woodman-Ralph JP, et al. Multiple stable isotopes from oak trees in southwestern Scotland and the potential for stable isotope dendroclimatology in maritime climatic regions. Chem Geol. 2008;252:62–71. doi: 10.1016/j.chemgeo.2008.01.006
  • Tei S, Sugimoto A, Yonenobu H, et al. Growth and physiological responses of larch trees to climate changes deduced from tree-ring widths and δ13C at two forest sites in eastern Siberia. Polar Sci. 2014;8(2):183–195. doi: 10.1016/j.polar.2013.12.002
  • Nakatsuka T, Ohnishi K, Hara T, et al. Oxygen and carbon isotopic ratios of tree-ring cellulose in a conifer-hardwood mixed forest in northern Japan. Geochem J. 2004;38:77–88. doi: 10.2343/geochemj.38.77
  • Munns R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002;25(2):239–250. doi: 10.1046/j.0016-8025.2001.00808.x
  • Chaves MM, Maroco JP, Pereira JS. Understanding plant responses to drought – from genes to the whole plant. Funct Plant Biol. 2003;30:239–264. doi: 10.1071/FP02076
  • Flexas J, Bota J, Loreto F, et al. Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol. 2004;6(03):269–279. doi: 10.1055/s-2004-820867
  • Ferrio JP, Voltas J. Carbon and oxygen isotope ratios in wood constituents of Pinus halepensis as indicators of precipitation, temperature and vapour pressure deficit. Tellus B. 2005;57B:164–173. doi: 10.3402/tellusb.v57i2.16780
  • Zhai L, Jiang J, DeAngelis D, et al. Prediction of plant vulnerability to salinity increase in a coastal ecosystem by stable isotope composition (δ18O) of plant stem water: a model study. Ecosystems. 2016;19:32–49. doi: 10.1007/s10021-015-9916-3
  • Gessler A, Ferrio JP, Hommel R, et al. Stable isotopes in tree rings: towards a mechanistic understanding of isotope fractionation and mixing processes from the leaves to the wood. Tree Physiol. 2014;34:796–818. doi: 10.1093/treephys/tpu040
  • Scheidegger Y, Saurer M, Bahn M, et al. Linking stable oxygen and carbon isotopes with stomatal conductance and photosynthetic capacity: a conceptual model. Oecologia. 2000;125:350–357. doi: 10.1007/s004420000466
  • Voltas J, Camarero JJ, Carulla D, et al. A retrospective, dual-isotope approach reveals individual predisposition to winter-drought induced dieback in the southernmost distribution limit of Scots pine. Plant Cell Environ. 2013;36:1435–1448. doi: 10.1111/pce.12072
  • Lopez CML, Mizota C, Yamanaka T, et al. Effects of pre-treatment on the nitrogen isotope composition of Japanese black pine (Pinus thunbergii) tree-rings as affected by high N input. Rapid Commun Mass Spectrom. 2011;25:3298–3302. doi: 10.1002/rcm.5227
  • Lopez CML, Mizota C, Yamanaka T, et al. Temporal changes in nitrogen acquisition of Japanese black pine (Pinus thunbergii) associated with black locust (Robinia pseudoacacia). J For Res. 2014;25(3):585–589. doi: 10.1007/s11676-014-0498-2
  • Nobori Y. Development of a three-dimensional computer graphics system for forest stand structures. J For Plann. 1998;4:83–87.
  • Kagawa A, Naito D, Sugimoto A, et al. Effects of spatial and temporal variability in soil moisture on widths and δ13C values of eastern Siberian tree rings. J Geophys Res. 2003;108(D16):4500. doi: 10.1029/2002JD003019
  • Brendel O, Iannetta PPM, Stewart D. A rapid and simple method to isolate pure alpha-cellulose. Phytochem Anal. 2000;11:7–10. doi: 10.1002/(SICI)1099-1565(200001/02)11:1<7::AID-PCA488>3.0.CO;2-U
  • Gaudinski JB, Dawson TE, Quideau S, et al. Comparative analysis of cellulose preparation techniques for use with 13C, 14C, and 18O isotopic measurements. Anal Chem. 2005;77:7212–7224. doi: 10.1021/ac050548u
  • Ferrio JP, Díez-Herrero A, Tarrés D, et al. Using stable isotopes of oxygen from tree-rings to study the origin of past flood events: first results from the Iberian Peninsula. Quaternaire. 2015;26:67–80. doi: 10.4000/quaternaire.7172
  • McCarroll D, Gagen MH, Loader NJ, et al. Correction of tree ring stable carbon isotope chronologies for changes in the carbon dioxide content of the atmosphere. Geochim Cosmochim Acta. 2009;73:1539–1547. doi: 10.1016/j.gca.2008.11.041
  • NOAA-GMD network station, Tae-ahn Peninsula, Korea. [cited 2018 Jan 3]. Available from: ftp://aftp.cmdl.noaa.gov/data/trace_gases/co2c13/flask/surface/co2c13_tap_surface-flask_1_sil_event.txt.
  • Hasegawa PM, Bressan RA, Zhu JK, et al. Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol. 2000;51:463–499. doi: 10.1146/annurev.arplant.51.1.463
  • Brugnoli E, Lauteri M. Effects of salinity on stomatal conductance, photosynthetic capacity and carbon isotope discrimination of salt-tolerant (Gossypium hirsutum L.) and salt-sensitive (Phaseolus vulgaris L.) C3 non-halophytes. Plant Physiol. 1991;95:628–635. doi: 10.1104/pp.95.2.628
  • Chaves MM, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress: regulation mechanism from whole plant to cell. J Bot. 2009;103:551–560.
  • Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 2008;59:651–681. doi: 10.1146/annurev.arplant.59.032607.092911
  • Ito H, Yoshizaki S. Growth experiment of evergreen leaved trees growing at the coastal area using salty water. J Jpn Soc Reveg Technol. 2013;39(1):117–120. doi: 10.7211/jjsrt.39.117
  • Rossi L, Borghi M, Francini A, et al. Salt stress induces differential regulation of the phenylpropanoid pathway in Olea europea cultivars Frantio (salt-tolerant) and Leccino (salt-sensitive). J Plant Physiol. 2016;204:8–15. doi: 10.1016/j.jplph.2016.07.014
  • Chapin FS III, Schulze E-D, Mooney HA. The ecology and economics of storage in plants. Annu Rev Ecol Evol Syst. 1990;21:423–447. doi: 10.1146/annurev.es.21.110190.002231
  • Linder S, Rook DA. Effects of mineral nutrition on carbon dioxide exchange and partitioning of carbon in trees. In: Bowen GD, Nambiar EKS, editor. Nutrition of plantation forests. London: Academic Press; 1984. p. 211–236.
  • Cristiano G, Camposeo S, Fracchiolla M, et al. Salinity differentially affects growth and ecophysiology of two mastic tree (Pistacia lentiscus L.) accessions. Forests. 2016;7:156. doi: 10.3390/f7080156
  • Puri E H, Korner C G. Defoliation reduces growth but not carbon reserves in Mediterranean Pinus pinaster trees. Trees. 2015;29:1187–1196. doi: 10.1007/s00468-015-1199-y
  • Dulamsuren C, Hauck M, Leuschner HH, et al. Gypsy moth-induced growth decline of Larix sibirica in a forest–steppe ecotone. Dendrochronologia. 2010;28:207–213. doi: 10.1016/j.dendro.2009.05.007
  • Barbour MM, Farquhar GD. Relative humidity- and ABA-induced variation in carbon and oxygen isotope ratios of cotton leaves. Plant Cell Environ. 2000;23(5):473–485. doi: 10.1046/j.1365-3040.2000.00575.x
  • Roden J, Siegwolf RTW. Is the dual-isotope conceptual model fully operational? Tree Physiol. 2012;32:1179–1182. doi: 10.1093/treephys/tps099
  • Roden JS, Farquhar GD. A controlled test of the dual-isotope approach for the interpretation of stable carbon and oxygen isotope ratio variation in tree rings. Tree Physiol. 2012;32:490–503. doi: 10.1093/treephys/tps019
  • Robinson D, Handley LL, Scrimgeour CM. A theory for 15N/14N fractionation in nitrate-grown vascular plants. Planta. 1998;205:397–406. doi: 10.1007/s004250050336
  • Matsuda Y, Hayakawa N, Ito S. Local and microscale distributions of Ceconcocum geophilum in soils of coastal pine forests. Fungal Ecol. 2009;2:31–35. doi: 10.1016/j.funeco.2008.10.002
  • Saleh-Rastin N. Salt tolerance of the mycorrhizal fungus Cenococcum graniforme (Sow.) Ferd. Eur J Forest Pathol. 1976;6:184–187. doi: 10.1111/j.1439-0329.1976.tb00523.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.