261
Views
4
CrossRef citations to date
0
Altmetric
Articles

Stable carbon isotopic composition of peat columns, subsoil and vegetation on natural and forestry-drained boreal peatlands

, &
Pages 622-641 | Received 10 Aug 2017, Accepted 22 Aug 2018, Published online: 27 Sep 2018

References

  • Andersson RA, Meyers P, Hornibrook E, et al. Elemental and isotopic carbon and nitrogen records of organic matter accumulation in a Holocene permafrost peat sequence in the East European Russian Arctic. J Quat Sci. 2012;27:545–552. doi: 10.1002/jqs.2541
  • Price GD, McKenzie JE, Pilcher JR, et al. Carbon-isotope variation in Sphagnum from hummock-hollow complexes: implications for Holocene climate reconstruction. Holocene. 1997;7:229–233. doi: 10.1177/095968369700700211
  • Nichols JE, Walcott M, Bradley R, et al. Quantitative assessment of precipitation seasonality and summer surface wetness using ombrotrophic sediments from an Arctic Norwegian peatland. Quat Res. 2009;72:443–451. doi: 10.1016/j.yqres.2009.07.007
  • Jones MC, Peteet DM, Sambrotto R. Late-glacial and Holocene δ15N and δ13C variation from a Kenai Peninsula, Alaska peatland. Palaeogeogr Palaeoclimatol Palaeoecol. 2010;293:132–143. doi: 10.1016/j.palaeo.2010.05.007
  • Ingram HAP. Soil layers in mires: function and terminology. J Soil Sci. 1978;29:224–227. doi: 10.1111/j.1365-2389.1978.tb02053.x
  • Krüger JP, Leifeld J, Alewell C. Degradation changes stable carbon isotope depth profiles in Palsa peatlands. Biogeosciences. 2014;11:3369–3380. doi: 10.5194/bg-11-3369-2014
  • Krüger JP, Leifeld J, Glatzel S, et al. Biogeochemical indicators of peatland degradation – a case study of a temperate bog in northern Germany. Biogeosciences. 2015;12:2861–2871. doi: 10.5194/bg-12-2861-2015
  • Jungner H, Sonninen E, Possnert G, et al. Use of bomb-produced 14C to evaluate the amount of CO2 emanating from two peat bogs in Finland. Radiocarbon. 1995;37:567–573. doi: 10.1017/S0033822200031052
  • Rubino M, Etheridge DM, Trudinger CM, et al. A revised 1000 year atmospheric δ13C-CO2 record from Law Dome and South Pole, Antarctica. J Geophys Res Atmos. 2013;118:8482–8499. doi: 10.1002/jgrd.50668
  • Scripps Institution of Oceanography. Scripps CO2 program [Internet]. 2017. Available from: http://scrippsco2.ucsd.edu/#.
  • Keeling CD. The Suess effect: 13carbon–14carbon interrelations. Environ Int. 1979;2:229–300. doi: 10.1016/0160-4120(79)90005-9
  • Gorham E. Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl. 1991;1:182–195. doi: 10.2307/1941811
  • Blytt A. Forsøg til en Theori om Invandringen af Norges Flora under vexlende regnfulde og tørre Tider. Nyt Mag Naturv. 1867;21:279–362. Norwegian.
  • Kesitalo J. Reserves of peat and ligneous material in the mires of the Siikajoki valley and the Oulujärvi area. Oulu: Societas Geographica Fenniae Nordicae; 1982; (Oulun yliopiston maantieteen laitoksen julkaisuja; 75).
  • Laine J, Vasander H, Laiho R. Long-term effects of water level drawdown on the vegetation of drained pine mires in southern Finland. J Appl Ecol. 1995;32:785–802. doi: 10.2307/2404818
  • Turunen J, Tolonen K, Tolvanen S, et al. Carbon accumulation in the mineral subsoil of boreal mires. Glob Biogeochem Cycl. 1999;13:71–79. doi: 10.1029/1998GB900008
  • Minkkinen K, Vasander H, Jauhiainen S, et al. Post-drainage changes in vegetation composition and carbon balance in Lakkasuo mire, Central Finland. Plant Soil. 1998;207:107–120. doi: 10.1023/A:1004466330076
  • Pitkänen A, Turunen J, Tahvanainen T, et al. Carbon storage change in a partially forestry-drained boreal mire determined through peat column inventories. Boreal Environ Res. 2013;18:223–234.
  • Krüger JP, Alewell C, Minkkinen K, et al. Calculating carbon changes in peat soils drained for forestry with four different profile-based methods. Forest Ecol Manage. 2016;381:29–36. doi: 10.1016/j.foreco.2016.09.006
  • Simola H, Pitkänen A, Turunen J. Carbon loss in drained forestry peatlands in Finland, estimated by re-sampling peatlands surveyed in the 1980s. Eur J Soil Sci. 2012;63:798–807. doi: 10.1111/j.1365-2389.2012.01499.x
  • Ojanen P, Lehtonen A, Heikkinen J, et al. Soil CO2 balance and its uncertainty in forestry-drained peatlands in Finland. Forest Ecol Manage. 2014;325:60–73. doi: 10.1016/j.foreco.2014.03.049
  • Sallantaus T. Response of leaching from mire ecosystems to changing climate. In: Kanninen M, Heikinheimo P, editor. Finnish research programme on climate change. 2nd progress report. Helsinki: Academy of Finland; 1993. p. 291–296.
  • Nykänen H, Alm J, Silvola J, et al. Methane fluxes on boreal peatlands of different fertility and the effect of long-term experimental lowering of the water table on flux rates. Glob Biogeochem Cycl. 1998;12:53–69. doi: 10.1029/97GB02732
  • Jaatinen K, Fritze H, Laine J, et al. Effects of short- and long-term water-level drawdown on the populations and activity of aerobic decomposers in a boreal peatland. Glob Change Biol. 2007;13:491–510. doi: 10.1111/j.1365-2486.2006.01312.x
  • Mpamah PA, Taipale S, Rissanen AJ, et al. The impact of long-term water level draw-down on microbial biomass: A comparative study from two peatland sites with different nutrient status. Eur J Soil Biol. 2017;80:59–68. doi: 10.1016/j.ejsobi.2017.04.005
  • Straková P, Penttilä T, Laine J, et al. Disentangling direct and indirect effects of water table drawdown on above- and belowground plant litter decomposition: consequences for accumulation of organic matter in boreal peatlands. Glob Change Biol. 2012;18:322–335. doi: 10.1111/j.1365-2486.2011.02503.x
  • Esmeijer-Liu AJ, Kürschner WM, Lotter AF, et al. Stable carbon and nitrogen isotopes in a peat profile are influenced by early stage diagenesis and changes in atmospheric CO2 and N deposition. Water Air Soil Pollut. 2012;223:2007–2022. doi: 10.1007/s11270-011-1001-8
  • Ghashghaie J, Badeck F-W, Lanigan G, et al. Carbon isotope fractionation during dark respiration and photorespiration in C3 plants. Phytochem Rev. 2003;2:145–161. doi: 10.1023/B:PHYT.0000004326.00711.ca
  • Brüggemann N, Gessler A, Kayler Z, et al. Carbon allocation and carbon isotope fluxes in the plant–soil–atmosphere continuum: A review. Biogeosciences. 2011;8:3457–3489. doi: 10.5194/bg-8-3457-2011
  • Laine J, Komulainen VM, Laiho R, et al. Lakkasuo – a guide to mire ecosystem. Helsinki: Department of Forest Ecology, University of Helsinki; 2004; (Helsingin yliopiston metsäekologian laitoksen julkaisuja; 31).
  • Geological Survey of Finland. Peatland database of Geological Survey of Finland [Internet]. 2017. Available from: upa.gtk.fi/paikkatieto/meta/tutkitut_turvealueet.html.
  • Pirinen P, Simola H, Aalto J, et al. Tilastoja Suomen ilmastosta 1981–2010. Helsinki: Ilmatieteen laitos; 2012; (Raportteja; 2012:1).
  • O’Kelly BC, Sivakumar V. Water content determinations for peat and other organic soils using the oven-drying method. Dry Technol. 2014;32:631–643. doi: 10.1080/07373937.2013.849728
  • Harris D, Horwath W, van Kessel C. Acid fumigation of soils to remove carbonates prior to total organic carbon or carbon-13 isotopic analysis. Soil Sci Soc Am J. 2001;65:1853–1856. doi: 10.2136/sssaj2001.1853
  • Coplen TB, Brand WA, Gehre M, et al. New guidelines for δ13C measurements. Anal Chem. 2006;78:2439–2441. doi: 10.1021/ac052027c
  • Hobbie EA, Chen J, Hanson PJ, et al. Long-term carbon and nitrogen dynamics at SPRUCE revealed through stable isotopes in peat profiles. Biogeosciences. 2017;14:2481–2494. doi: 10.5194/bg-14-2481-2017
  • Miltner A, Bombach P, Schmidt-Brücken B, et al. Som genesis: microbial biomass as a significant source. Biogeochemistry. 2012;111:41–55. doi: 10.1007/s10533-011-9658-z
  • Alm J, Tolonen K, Vasander H. Determination of recent apparent carbon accumulation in peat using dated fire horizons. Suo. 1992;43:191–194.
  • Waldron S, Hall AJ, Fallick AE. Enigmatic stable isotope dynamics of deep peat methane. Glob Biogeochem Cycl. 1999;13:93–100. doi: 10.1029/1998GB900002
  • Clymo RS, Bryant CL. Diffusion and mass flow of dissolved carbon dioxide, methane, and dissolved organic carbon in a 7-m deep raised peat bog. Geochim Cosmochim Acta. 2008;72:2048–2066. doi: 10.1016/j.gca.2008.01.032
  • Fernandez I, Mahieu N, Cadisch G. Carbon isotopic fractionation during decomposition of plant materials of different quality. Glob Biogeochem Cycl. 2003;17:1075. doi: 10.1029/2001GB001834
  • Benner R, Fogel ML, Sprague EK, et al. Depletion of 13C in lignin and its implications for stable carbon isotope studies. Nature. 1987;329:708–710. doi: 10.1038/329708a0
  • Laine J, Vasander H. Ecology and vegetation gradients of peatlands. In: Vasander H, editor. Peatlands in Finland. Helsinki: Finnish Peatland Society; 1996. p. 10–20.
  • Nichols JE, Isles PDF, Peteet DM. A novel framework for quantifying past methane recycling by Sphagnum-methanotroph symbiosis using carbon and hydrogen isotope ratios of leaf wax biomarkers. Geochem Geophys Geosyst. 2014;15:1827–1836. doi: 10.1002/2014GC005242
  • Holmes ME, Chanton JP, Tfaily M, et al. Co2 and CH4 isotope compositions and production pathways in a tropical peatland. Glob Biogeochem Cycl. 2015;29:1–18. doi: 10.1002/2014GB004951
  • Brooks JR, Flanagan LB, Buchmann N, et al. Carbon isotope composition of boreal plants: functional grouping of life forms. Oecologia. 1997;110:301–311. doi: 10.1007/s004420050163
  • Charman DJ, Aravena R, Bryant CL, et al. Carbon isotopes in peat, DOC, CO2, and CH4 in a Holocene peatland on Dartmoor, southwest England. Geology. 1999;27:539–542. doi: 10.1130/0091-7613(1999)027<0539:CIIPDC>2.3.CO;2
  • Chasar L, Chanton J. Radiocarbon and stable carbon isotopic evidence for transport and transformation of dissolved organic carbon, dissolved inorganic carbon, and CH4 in a northern Minnesota peatland. Glob Biogeochem Cycl. 2000;14:1095–1108. doi: 10.1029/1999GB001221
  • Tfaily MM, Cooper WT, Kostka JE, et al. Organic matter transformation in the peat column at Marcell experimental forest: humification and vertical stratification. J Geophys Res Biogeosci. 2014;119:661–675. doi: 10.1002/2013JG002492
  • Silvola J, Alm J, Ahlholm U, et al. Co2 fluxes from peat in boreal mires under varying temperature and moisture conditions. J Ecol. 1996;84:219–228. doi: 10.2307/2261357
  • Turunen J, Moore TR. Controls on carbon accumulation and storage in the mineral subsoil beneath peat in Lakkasuo mire, central Finland. Eur J Soil Sci. 2003;54:279–286. doi: 10.1046/j.1365-2389.2003.00528.x
  • Moore TR, Turunen J. Carbon accumulation and storage in mineral subsoil beneath peat. Soil Sci Soc Am J. 2004;68:690–696. doi: 10.2136/sssaj2004.6900
  • Straková P, Anttila J, Spetz P, et al. Litter quality and its response to water level drawdown in boreal peatlands at plant species and community level. Plant Soil. 2010;335:501–520. doi: 10.1007/s11104-010-0447-6
  • Rezanezhad F, Price JS, Quinton WL, et al. Structure of peat soils and implications for water storage, flow and solute transport: a review update for geochemists. Chem Geol. 2016;429:75–84. doi: 10.1016/j.chemgeo.2016.03.010
  • Levy ZF, Siegel DI, Dasgupta SS, et al. Stable isotopes of water show deep seasonal recharge in northern bogs and fens. Hydrol Process. 2014;28:4938–4952. doi: 10.1002/hyp.9983

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.