233
Views
6
CrossRef citations to date
0
Altmetric
Review Article

Soil water balance in the Lake Chad Basin using stable water isotopes and chloride of soil profiles

, , , , , , & show all
Pages 459-477 | Received 10 Jan 2019, Accepted 04 Jul 2019, Published online: 01 Aug 2019

References

  • Wallace JS, Lloyd CR, Sivakumar MVK. Measurement of soil, plant and total evaporation from millet in Niger. Agric For Meteorol. 1993;63:149–169. doi: 10.1016/0168-1923(93)90058-P
  • Ping J, Nichol C, Wei X. Quantification of groundwater recharge using the chloride mass balance method in a semi-arid mountain terrain, south Interior British Columbia, Canada. J Chem Pharm Res. 2014;6(1):383–388.
  • Gee GW, Zhang ZF, Tyler SW, et al. Chloride mass balance: Cautions in predicting increased recharge rates. Vadose Zone J. 2005;4(1):72–78. doi: 10.2113/4.1.72
  • Edmunds WM, Gaye CB. Estimating the spatial variability of groundwater recharge in the Sahel using chloride. J Hydrol. 1994;156(1–4):47–59. doi: 10.1016/0022-1694(94)90070-1
  • Edmunds WM, Fellman E, Goni IB. Lakes, groundwater and palaeohydrology in the Sahel of NE Nigeria: evidence from hydrogeochemistry. J Geol Soc London. 1999;156(2):345–355. doi: 10.1144/gsjgs.156.2.0345
  • Edmunds WM, Fellman E, Goni IB, et al. Spatial and temporal distribution of groundwater recharge in northern Nigeria. Hydrogeol J. 2002;10(1):205–215. doi: 10.1007/s10040-001-0179-z
  • Ngatcha BN, Mudry J, Aranyossy JF, et al. Apport de la géologie, de l’hydrogéologie et des isotopes de l’environnement à la connaissance des «nappes en creux» du Grand Yaere (Nord Cameroun). Rev Sci Eau. 2007;20(1):29–43.
  • Allison GB, Barnes CJ. Estimation of evaporation from non-vegetated surfaces using natural deuterium. Nature. 1983;301(5896):143. doi: 10.1038/301143a0
  • Clark I, Fritz P. Environmental isotopes in hydrogeology. New York: CRC Press; 1997.
  • Walker GR, Hughes MW, Allison GB, et al. The movement of isotopes of water during evaporation from a bare soil surface. J Hydrol. 1988;97(3–4):181–197. doi: 10.1016/0022-1694(88)90114-X
  • Allison GB, Barnes CJ, Hughes MW, et al. Effect of climate and vegetation on oxygen-18 and deuterium profiles in soils. In: Proceedings of an international symposium on isotope hydrology in water resources development, 1983 Sept 12–16; Vienna: IAEA; 1984. p. 105–123.
  • Allison GB, Barnes CJ. Estimation of evaporation from the normally ‘dry’ Lake Frome in South Australia. J Hydrol. 1985;78(3–4):229–242. doi: 10.1016/0022-1694(85)90103-9
  • Fontes JC, Yousfi M, Allison GB. Estimation of long-term, diffuse groundwater discharge in the northern Sahara using stable isotope profiles in soil water. J Hydrol. 1986;86(3–4):315–327. doi: 10.1016/0022-1694(86)90170-8
  • Christmann D, Sonntag C. Groundwater evaporation from East Saharian depressions by means of deuterium and oxygen-18 in soil moisture. In: Proceedings: isotope techniques in water resource development; 1987 March 30–April 3; Vienna: IAEA; 1987. p. 189–204.
  • Taupin JD. Comparison of isotopic (18O and 2H) and chemical (Cl–) methods to calculate the dry season evaporation rate of near surface groundwater in a Sahelian region, Niamey (Niger). Application of tracers in arid zone hydrology (Proceedings of the Vienna Symposium, August 1994); International Association of Hydrological Sciences (IAHS), Publication no. 232; 1995. p. 339–350.
  • Meredith KT, Hollins SE, Hughes CE, et al. Evaporation and concentration gradients created by episodic river recharge in a semi-arid zone aquifer: Insights from Cl–, δ18O, δ2H, and 3H. J Hydrol. 2015;529:1070–1078. doi: 10.1016/j.jhydrol.2015.09.025
  • Gaj M, Beyer M, Koeniger P, et al. In situ unsaturated zone water stable isotope (2H and 18O) measurements in semi-arid environments: A soil water balance. Hydrol Earth Syst Sci. 2016;20(2):715–731. doi: 10.5194/hess-20-715-2016
  • Candela L, Elorza FJ, Tamoh K, et al. Groundwater modelling with limited data sets: the Chari–Logone area (Lake Chad Basin. Chad). Hydrol Process. 2013;28(11):3714–3727. doi: 10.1002/hyp.9901
  • Lemoalle J. The Lake Chad Basin. In: Byers S, editor. The world’s largest wetlands: Ecology and conservation. Cambridge: Cambridge University Press; 2006. p. 316–346.
  • University of East Anglia Climatic Research Unit, Harris I-C, Jones P-D. CRU TS4.00: Climatic Research Unit (CRU) Time-Series (TS) version 4.00 of high-resolution gridded data of month-by-month variation in climate (Jan 1901–Dec 2015) [dataset]. 2017 Aug 25 [cited 2017 Nov 23]. In: CEDA Archive [Internet]. Available from: http://catalogue.ceda.ac.uk/uuid/edf8febfdaad48abb2cbaf7d7e846a86
  • Infoclimat.fr. Climatologie de l’année 2014 à Am-Timan [Internet]. 2017- [cited 2017 Sep 17]. Available from: http://www.infoclimat.fr/climatologie/annee/2014/am-timan/valeurs/64754.html
  • Goni IB. Tracing stable isotope values from meteoric water to groundwater in the southwestern part of the Chad basin. Hydrogeol J. 2006;14(5):742–752. doi: 10.1007/s10040-005-0469-y
  • DGMN. Directorate General of National Meteorology (DGMN) / Department of Exploitation and Meteorological Applications (DEAM) / Climatology Division (DC), Chad. Country profile database; 2017.
  • Barnes CJ, Allison GB. The distribution of deuterium and 18O in dry soils: 1. Theory. J Hydrol. 1983;60(1–4):141–156. doi: 10.1016/0022-1694(83)90018-5
  • Chapelle FH, Lovley DR. Rates of microbial metabolism in deep subsurface environments. Appl Environ Microbiol. 1990;56(6):1865–1874.
  • Mills R. Self diffusion in normal and heavy water in the range of 1–45°. J Phys Chem. 1973;77(5):685–688. doi: 10.1021/j100624a025
  • De Vries DA, Kruger AJ. On the value of the diffusion coefficient of water vapour in air. Paris: Proceedings of CNRS Symposium; 1966. p. 61–72.
  • Murray FW. On the computation of saturation vapour pressure. J Appl Meteorol. 1967;6:203–204. doi: 10.1175/1520-0450(1967)006<0203:OTCOSV>2.0.CO;2
  • Schneider JL. Carte hydrogéologique de la République du Tchad [map]. Paris: BRGM; 1969; 1 sheet: 1:1500000; 84.1 ( 118.9 cm; colour.
  • Cratchley CR, Louis P, Ajakaiye DE. Geophysical and geological evidence for the Benue-Chad Basin Cretaceous rift valley system and its tectonic implications. J Afr Earth Sci. 1984;2(2):141–150.
  • Lang J, Kogbe C, Alidou S, et al. The continental terminal in West Africa. J Afr Earth Sci. 1990;10(1–2):79–99. doi: 10.1016/0899-5362(90)90048-J
  • Eugster HP, Maglione G. Brines and evaporites of the Lake Chad basin, Africa. Geochim Cosmochim Acta. 1979;43(7):973–981. doi: 10.1016/0016-7037(79)90087-5
  • Ghienne JF, Mathieu S, Armelle B, et al. The Holocene giant Lake Chad revealed by digital elevation models. Quat Int. 2002;87(1):81–85. doi: 10.1016/S1040-6182(01)00063-5
  • Servant M, Servant S. Les formations lacustres et les diatomees du Quaternaire recent du fond de la cuvette tchadienne. Rev Géogr Phys Géol Dyn. 1970;13(2):6–76.
  • Koeniger P, Marshall JD, Link T, et al. An inexpensive, fast, and reliable method for vacuum extraction of soil and plant water for stable isotope analyses by mass spectrometry. Rapid Commun Mass Spectrom. 2011;25(20):3041–3048. doi: 10.1002/rcm.5198
  • Van Geldern R, Barth JAC. Optimization of instrument setup and post-run corrections for oxygen and hydrogen stable isotope measurements of water by isotope ratio infrared spectroscopy (IRIS). Limnol Oceanogr Meth. 2012;10(12):1024–1036. doi: 10.4319/lom.2012.10.1024
  • Dansgaard W. Stable isotopes in precipitation. Tellus. 1964;16(4):436–468. doi: 10.3402/tellusa.v16i4.8993
  • Zimmermann U, Ehhalt D, Münnich KO. Soil-water movement and evapotranspiration: changes in the isotopic composition of the water. In: Krippner M, editor. Proceedings of the symposium on isotopes in hydrology. Vienna: IAEA; 1967. 567–585.
  • Begru TA, Tesfahznegn GB. Chloride mass balance for estimation of groundwater recharge in a semi-arid catchment of northern Ethiopia. Hydrogeol J. 2019;27:363–378. doi: 10.1007/s10040-018-1845-8
  • Allison GB, Gee GW, Tyler SW. Vadose-zone techniques for estimating groundwater recharge in arid and semiarid regions. Soil Sci Soc Am J. 1994;58(1):6–14. doi: 10.2136/sssaj1994.03615995005800010002x
  • Huang T, Pang Z. Estimating groundwater recharge following land use change using chloride mass balance of soil profiles: a case study at Guyuan and Xifeng in the Loess Plateau of China. Hydrogeol J. 2011;19(1):177–186. doi: 10.1007/s10040-010-0643-8
  • Allison GB, Hughes MW. The use of environmental chloride and tritium to estimate total recharge to an unconfined aquifer. Soil Res. 1978;16(2):181–195. doi: 10.1071/SR9780181
  • Murphy EM, Ginn TR, Phillips JL. Geochemical estimates of paleorecharge in the Pasco Basin: Evaluation of the chloride mass balance technique. Water Resour Res. 1996;32(9):2853–2868. doi: 10.1029/96WR01529
  • Li X, Chang SX, Salifu KF. Soil texture and layering effects on water and salt dynamics in the presence of a water table: a review. Environ Rev. 2013;22(1):41–50. doi: 10.1139/er-2013-0035
  • Nizinski J, Morand D, Fournier C. Actual evapotranspiration of a thorn scrub with Acacia tortilis and Balanites aegyptiaca (North Senegal). Agric For Meteorol. 1994;72(1–2):93–111. doi: 10.1016/0168-1923(94)90093-0
  • Richts A, Struckmeier W, Zaepke M. WHYMAP and the groundwater resources of the world 1:25,000,000. In: Jones JAA, editor. Sustaining groundwater resources: a critical element in the global water crisis. Dordrecht: Springer; 2011. (International Year of Planet Earth)
  • Scanlon BR, Keese KE, Flint AL, et al. Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol Process. 2006;20:3335–3370. doi: 10.1002/hyp.6335
  • Leduc C, Favreau G, Schroeter P. Long-term rise in a Sahelian water-table: the Continental Terminal in South-West Niger. J Hydrol. 2001;243:43–54. doi: 10.1016/S0022-1694(00)00403-0
  • Le Coz M, Favreau G, Daouda Ousmane S. Modeling increased groundwater recharge due to change from rainfed to irrigated cropping in a semiarid region. Vadose Zone J. 2013;12; doi: 10.2136/vzj2012.0148

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.