241
Views
3
CrossRef citations to date
0
Altmetric
Articles

Geochemical evolution, residence times and recharge conditions of the multilayered Tubarão aquifer system (State of São Paulo – Brazil) as indicated by hydrochemical, stable isotope and 14C data

, ORCID Icon, , &
Pages 495-512 | Received 10 Mar 2020, Accepted 08 Jun 2020, Published online: 27 Jul 2020

References

  • Gleeson T, Befus KM, Jasechko S, et al. The global volume and distribution of modern groundwater. Nat Geosci. 2015;9:161–167. doi: 10.1038/ngeo2590
  • Graaf IEM, Gleeson J, Rens Van Beek LPH, et al. Environmental flow limits to global groundwater pumping. Nature. 2019;574:90–108. doi: 10.1038/s41586-019-1594-4
  • Sánchez-Murillo R, Brooks ES, Sampson L, et al. Ecohydrological analysis of Steelhead (Oncorhynchus mykiss) habitat in an effluent dependent stream in the Pacific Northwest, USA. Ecohydrology. 2014;7(2):557–568. doi: 10.1002/eco.1376
  • Oda GH, Iritani MA, Hassuda S, et al. Geometria dos aquíferos e circulação das águas subterrâneas no município de Campinas [Aquifer geometry and groundwater circulation in Campinas municipality]. Cadernos IG/UNICAMP. 1996;6(2):18–36. Portuguese.
  • Oda GH, Takeuchi DM, Ezaki S, et al. Geometria do Aquífero Tubarão entre os municípios de Indaiatuba e Capivari (SP) [Geometry of Tubarão Aquifer between the cities of Indaiatuba and Capivari (SP)]. Rev Inst Geol. 2012;33:23–40. Portuguese.
  • DAEE/IG/IPT/CPRM. Mapa de Águas Subterrâneas do Estado de São Paulo. Escala 1:1,000,000. Nota explicativa. [Hydrogeological Map of São Paulo state. Scale 1:1,000,000]. 3 v. (map and CD-ROM); 2005. Portuguese.
  • Profill Engenharia e Ambiente AS. Plano de monitoramento quali-quantitativo das águas subterrâneas da Bacias PCJ. Produto 2: Diagnóstico Hidrogeológico das Bacias PCJ [Groundwater quali-quantitative monitoring plan for the PCJ Basin. Product 2: Hydrogeological Diagnosis of PCJ Basin]. Report Agência das Bacias PCJ; 2019. Portuguese.
  • Battle-Aguillar J, Banks EW, Batelaan O, et al. Groundwater residence time and aquifer recharge in multilayered, semi-confined and faulted aquifer systems using environmental tracers. J Hydrol. 2017;546:150–165. doi: 10.1016/j.jhydrol.2016.12.036
  • Mahlknecht J, Schneider J, Merkel B, et al. Groundwater recharge in a sedimentary basin in semi-arid Mexico. Hydrogeol J. 2004;12(5):511–530. doi: 10.1007/s10040-004-0332-6
  • Abid K, Ammar FH, Weise S, et al. Geochemistry and residence time estimation of groundwater from Miocene-Pliocene and Upper Cretaceous aquifers of southern Tunisia. Quat Int. 2014;338:59–70. doi: 10.1016/j.quaint.2014.04.036
  • Betheke CM, Johnson TM. Groundwater age and groundwater age dating. Annu Rev Earth Planet Sci. 2008;36:121–152. doi: 10.1146/annurev.earth.36.031207.124210
  • Blaser PC, Coetsiers M, Aeschbach-Hertig W, et al. A new groundwater radiocarbon correction approach for paleoclimate conditions during recharge and hydrochemical evolution: the Ledo-Paniselian Aquifer, Belgium. Appl Geochem. 2010;25:437–455. doi: 10.1016/j.apgeochem.2009.12.011
  • Bretzler A, Osenbrück K, Gloaguen R, et al. Groundwater origin and flow dynamics in active rift systems—a multi-isotope approach in the Main Ethiopian Rift. J Hydrol. 2011;402:274–289. doi: 10.1016/j.jhydrol.2011.03.022
  • Cartwright I, Cendón D, Currel M, et al. A review of radioactive isotopes and other residence time tracers in understanding groundwater recharge: possibilities, challenges, and limitations. J Hydrol. 2017;555:797–811. doi: 10.1016/j.jhydrol.2017.10.053
  • Coetsiers M, Walraevens K. A new correction model for 14C ages in aquifers with complex geochemistry—application to the Neogene Aquifer, Belgium. Appl Geochem. 2009;24:768–776. doi: 10.1016/j.apgeochem.2009.01.003
  • Cook PG, Böhlke JK. Determining timescales for groundwater flow and solute transport. In: Cook PG, Herczeg A, editors. Environmental tracers in subsurface hydrology. Boston: Kluwer; 2000. p. 1–30.
  • Gastmans D, Menegário AA, Hutcheon I. Stable isotopes, carbon-14 and hydrochemical composition from a basaltic aquifer in São Paulo State, Brazil. Environ Earth Sci. 2017;76:150. doi: 10.1007/s12665-017-6468-1
  • Magnone D, Richards LA, van Dongen BE, et al. Calculating 14C mean residence times of inorganic carbon derived from oxidation of organic carbon in groundwater using the principles of 87Sr/86Sr and cation ratio mixing. Geochim Cosmochim Acta. 2019;267:322–340. doi: 10.1016/j.gca.2019.09.019
  • Petersen JO, Deschamps P, Hamelin B, et al. Groundwater flowpaths and residence times inferred by 14C, 36Cl and 4He isotopes in the Continental Intercalaire aquifer (North-Western Africa). J Hydrol. 2018;560:11–23. doi: 10.1016/j.jhydrol.2018.03.003
  • Saby M, Larocque M, Pinti DL, et al. Linking groundwater quality to residence times and regional geology in the St. Lawrence Lowlands, southern Quebec, Canada. Appl Geochem. 2016;65:1–13. doi: 10.1016/j.apgeochem.2015.10.011
  • Scheiber L, Ayora C, Vázquez-Suñe E, et al. Recent and old groundwater in the Nieba-Posadas regional aquifer (southern Spain): implications for its management. J Hydrol. 2015;523:624–635. doi: 10.1016/j.jhydrol.2015.01.076
  • Aggarwal PK, Gat JR. Froehlich KFO Isotopes in the water cycle—past present and future of a developing science. Dordrecht: Springer; 2005.
  • Aggarwal PK, Romatschke U, Araguas-Araguas L, et al. Proportions of convective and stratiform precipitation revealed in water isotope ratios. Nat Geosci. 2016;9(8):624–629. doi: 10.1038/ngeo2739
  • Cobb KM, Adkins JF, Partin JW, et al. Regional-scale climate influences on temporal variations of rainwater and cave dripwater oxygen isotopes in northern Borneo. Earth Planet Sci Lett. 2007;263(3–4):207–220. doi: 10.1016/j.epsl.2007.08.024
  • Dansgaard W. Stable isotopes in precipitation. Tellus. 1964;16(4):436–468. doi: 10.3402/tellusa.v16i4.8993
  • Sanchez-Murillo R, Birkel C, Welsh K, et al. Key drivers controlling stable isotope variations in daily precipitation of Costa Rica: Caribbean Sea versus Eastern Pacific Ocean moisture sources. Quat Sci Rev. 2016;131:250–261. doi: 10.1016/j.quascirev.2015.08.028
  • Santos V, Gastmans D, Sanchez-Murillo R, et al. Regional atmospheric dynamics govern interannual and seasonal stable isotope composition in southeastern Brazil. J Hydrol. 2019;579:124136. doi: 10.1016/j.jhydrol.2019.124136
  • Clark ID, Fritz P. Environmental isotopes in hydrogeology. Boca Raton (FL): Lewis Publishers; 1997.
  • Gonfiantini R. Environmental isotopes in lake studies. In: Fritz P, Fontes JC, editors. Handbook of environmental isotope geochemistry. Amsterdam: Elsevier; 1986. p. 113–168.
  • Currell MJ, Cartwright I, Bradley DC, et al. Recharge history and controls on groundwater quality in the Yuncheng Basin, north China. J Hydrol. 2010;385:216–229. doi: 10.1016/j.jhydrol.2010.02.022
  • Herczeg AL, Leaney FWJ, Stadler MF, et al. Chemical and isotopic indicators of point-source recharge to a karst aquifer, South Australia. J Hydrol. 1997;192:271–299. doi: 10.1016/S0022-1694(96)03100-9
  • Sánchez-Murillo R, Birkel C. Groundwater recharge mechanisms inferred from isoscapes in a complex tropical mountainous region. Geophys Res Lett. 2016;43(10):5060–5069. doi: 10.1002/2016GL068888
  • Jasechko S, Taylor RG. Intensive rainfall recharges tropical groundwaters. Environ Res Lett. 2015;10:124015. doi: 10.1088/1748-9326/10/12/124015
  • Edmunds WM. Geochemistry’s vital contribution to solving water resource problems. Appl Geochem. 2009;24:1058–1073. doi: 10.1016/j.apgeochem.2009.02.021
  • Kalin RM. Radiocarbon dating of groundwater systems. In: Cook P, Herczeg A, editors. Environmental tracers in subsurface hydrology. New York: Kluwer; 2000. p. 111–144.
  • Cartwright I, Currel MJ, Cendón DI, et al. A review of the use of radiocarbon to estimate groundwater residence times in semi-arid and arid areas. J Hydrol. 2020;580:124247. doi: 10.1016/j.jhydrol.2019.124247
  • Kulongoski JT, Hilton DR, Cresswell RG, et al. Helium-4 characteristics of groundwaters from Central Australia: comparative chronology with chlorine-36 and carbon-14 dating techniques. J Hydrol. 2008;348:176–194. doi: 10.1016/j.jhydrol.2007.09.048
  • Plummer LN, Glynn PD. Radiocarbon dating in groundwater systems. In: Cook PG, Herczeg AL, editors. Isotope methods for dating old groundwater. Boston, MA: Springer; 2013. p. 35–89.
  • Stradioto MR. Caracterização Hidrogeoquímica, Isotópica e Diagenética do Sistema Aquífero Bauru no Estado de São Paulo [Hydrochemical, Isotopic and Diagenetic Characterization of Bauru Aquifer System in São Paulo state] [PhD thesis]. São Paulo, SP, Brazil: Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista; 2016. Portuguese.
  • Gallo G, Sinelli O. Estudo hidroquímico e isotópico das águas subterrâneas na região de Ribeirão Preto (SP) [Groundwater isotopic studies in the region of Ribeirão Preto (SP)]. Rev Bras Geocienc. 1980;10:129–140. Portuguese. doi: 10.25249/0375-7536.1980129140
  • Silva RBG. Estudo Hidroquímico e Isotópico do Aquífero Botucatu no Estado de São Paulo [Hydrochemical and isotopic studies of Botucatu Aquifer in São Paulo State] [PhD Thesis]. São Paulo, SP, Brazil: Instituto de Geociências, Universidade de São Paulo; 1983. Portuguese.
  • Kimmelmann e Silva AA, Rebouças A. 14C analyses of groundwater from the Botucatu aquifer system in Brazil. Radiocarbon. 1989;31(3):926–933. doi: 10.1017/S0033822200012546
  • Sracek O, Hirata R. Geochemical and stable isotopic evolution of the Guarani Aquifer in the State of São Paulo, Brazil. Hydrogeol J. 2002;10:643–655. doi: 10.1007/s10040-002-0222-8
  • Bonotto DM, Jiménez-Rueda JR. U-ages in soils and groundwater evidencing wet periods 400–600 ky ago in southeast Brazil. Appl Radiat Isot. 2007;65:776–783. doi: 10.1016/j.apradiso.2007.03.001
  • Cresswell RG, Bonotto DM. Some possible evolutionary scenarios suggested by 36Cl measurements in Guarani aquifer groundwaters. Appl Radiat Isot. 2008;66:1160–1174. doi: 10.1016/j.apradiso.2008.01.011
  • Gastmans D, Chang HK, Hutcheon I. Stable isotopes (δ2H, δ18O and δ13C) in groundwaters from the northwestern portion of the Guarani Aquifer System (Brazil). Hydrogeol J. 2010;18(6):1497–1513. doi: 10.1007/s10040-010-0612-2
  • Aggarwal PK, Matsumoto T, Sturchio NC, et al. Continental degassing of 4He by superficial discharge of deep groundwater. Nat Geosci. 2014;8:35–39. doi: 10.1038/ngeo2302
  • Kirchheim RE, Gastmans D, Chang HK, et al. The use of isotopes in evolving groundwater circulation models of regional continental aquifers: the case of the Guarani Aquifer System. Hydrol Process. 2019;33:2266–2278. doi: 10.1002/hyp.13476
  • Ezaki S, Iritani MA, Oda GH, et al. Estudo hidroquímico e isotópico das águas subterrâneas na porção central do Aquífero Tubarão. Estado de São Paulo – resultados preliminares [Groundwater hydrochemical and isotopic studies at the central portion of the Tubarão Aquifer in São Paulo state – preliminary results]. Proceedings of the 19th Brazilian Groundwater Congress; Campinas, SP, Brazil; 2016. Portuguese.
  • Ezaki S, Iritani MA, Gastmans D. 14C and 4He isotopes for the groundwater dating of the Tubarão aquifer system, central portion of the Paraná basin in the state of São Paulo, Brazil. Proceedings International Symposium on Isotope Hydrology: Advancing the understanding of water cycle processes, Vienna, Austria; 2019.
  • Fracalossi CP. Uso da termocronologia por traços de fissão em apatita no reconhecimento de áreas de recarga e análises isotópicas de 234U/238U em águas subterrâneas no aquífero Itararé no município de Americana (SP) [The use of thermocronology of apatite fission trace to recognize recharge áreas and 234U/238U isotopic analysis in Itararé aquifer groundwater at the municipality of Americana (SP)] [Master thesis]. São Paulo, SP, Brazil: Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista; 2007. Portuguese.
  • Vidal AC. Estudo Hidrogeológico do Aqüífero Tubarão na Área de Afloramento da Porção Central do Estado de São Paulo [Hydrogeological studies of the outcrop area of the Tubarã Aquifer in Central Portion of São Paulo state] [PhD thesis]. São Paulo, SP, Brazil: Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista; 2002. Portuguese.
  • Milani EJ, Melo JHG, Souza PA, et al. Bacia do Paraná. Bol Geocienc – Petrobras. 2007;15(2):265–287. Portuguese.
  • Milani EJ. Evolução Tectono-Estratigráfica da Bacia do Paraná e seu Relacionamento com a Geodinâmica Fanerozóica do Gondwana Sul-Ocidental [PhD thesis]. Porto Alegre, Brazil: Instituto de Geociências, Universidade Federal do Rio Grande do Sul; 1997. Portuguese.
  • Petri S. Litofácies e significado paleoambiental dos sedimentos Itararé na região Capivari-Rafard, Estado de São Paulo. Rev Inst Geol. 1992;13(1):7–30. Portuguese.
  • Petri S, Pires FA. The Itararé Subgroup (Permian-carboniferous) in the Middle Tietê Region, São Paulo, Brazil. Rev Bras Geocienc. 1992;22(3):301–310. Portuguese. doi: 10.25249/0375-7536.1992301310
  • Petri S, Vieira PC, Oda GH, et al. O Subgrupo Itararé, Permocarbonífero da Região do Médio Tietê, Estado de São Paulo: estudos de subsuperfície. Rev Inst Geol. 1996;17(1/2):63–78. Portuguese.
  • Pires FA, Petri S. O Subgrupo Itararé na Região Capivari-Rafard, Estado de São Paulo. Proceedings of the 2nd Symposium of Southeast Regional, São Paulo, SP, Brazil; 1991. p. 391–396. Portuguese.
  • Santos PR. Geological conditioning of glacial sedimentation: Neopaleozoic of the Paraná Basin and the Tertiary of Antarctica [dissertation]. São Paulo, SP, Brazil: University of São Paulo; 1996. Portuguese.
  • Zalán PV, Wolf S, Conceição JCJ, et al. Tectonics and sedimentation of the Paraná Basin. Proceedings of the 7th International Gondwana Symposium; 1988 Jul 18–21; São Paulo, SP, Brazil. São Paulo: IGc-USP; 1991. p. 83–117.
  • Oda GH. Contribuição à hidrogeologia da Região entre Salto e Pirapora de Itu (SP): análise da produtividade, ocorrência e circulação das águas subterrâneas dos sistemas aqüíferos Tubarão e Cristalino [master’s thesis]. São Paulo, SP: University of São Paulo; 1998. Portuguese.
  • DAEE. Estudo de Águas Subterrâneas. Região Administrativa 5. Campinas. 2v. São Paulo: Departamento de Águas e Energia Elétrica do Estado de São Paulo; 1981. Portuguese.
  • DAEE. Estudo de Águas Subterrâneas. Região Administrativa 4. Sorocaba. 2v. São Paulo: Departamento de Águas e Energia Elétrica do Estado de São Paulo; 1982. Portuguese.
  • IG (Instituto Geológico). Identificação de áreas potenciais de restrição e controle de captação e uso das águas subterrâneas na porção sul da UGRHI05 – Projeto ARC-TUB1. São Paulo: SMA/IG; 2011. Portuguese.
  • Campos HCNS. Caracterização e cartografia das províncias hidrogeoquímicas do Estado de São Paulo [dissertation]. São Paulo, SP, Brazil: University of São Paulo; 1993. Portuguese.
  • Meng SX, Maynard JB. Use of statistical analysis to formulate conceptual models of geochemical behavior: water chemical data from the Botucatu aquifer in São Paulo State, Brazil. J Hydrol. 2001;250:78–97. doi: 10.1016/S0022-1694(01)00423-1
  • APHA/AWWA/WEF. Standard methods for the examination of water and wastewater. 19th ed. Washington: American Public Health Association/American Water Works Association/Water Environment Federation; 1995.
  • R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2018. https://www.R-project.org/.
  • Parkhurst DL, Appelo P. User’s guide to PHREEQC (version 2)—A computer program for speciation, speciation, batch reaction, one-dimensional transport and inverse geochemical calculations. Denver, CO: U.S. Geological Survey; 1999. (USGS Water-Resources Investigations Report; 99-4259).
  • Parkhurst DL, Charlton SR. NetpathXL—an excel interface to the program NETPATH. Reston, VA: U.S. Department of the Interior, U.S. Geological Survey; 2008. (Techniques and methods: 6–A26).
  • Plummer LN, Prestemon EC, Parkhurst DL. An interactive code (NETPATH) for modeling NET geochemical reactions along a flow PATH, version 2.0. Denver (CO): U.S. Geological Survey; 1994; (USGS Water-Resources Investigations Report; 94–4169).
  • Simler R. DIAGRAMMES: Logiciel d’hydrochimie multilangage en distribution libre. V6.60 (15/02/2020) Laboratoire d’Hydrogéologie d’Avignon. French.
  • Craig H. Isotopic variations in meteoric waters. Science. 1961;133:1702–1703. doi: 10.1126/science.133.3465.1702
  • Fontes JC, Garnier JM. Determination of the initial 14C activity of the total dissolved carbon: a review of the existing models and a new approach. Water Resour Res. 1979;15:399–413. doi: 10.1029/WR015i002p00399
  • Han LF, Plummer LN. Revision of Fontes & Garnier’s model for the initial 14C content of dissolved inorganic carbon used in groundwater dating. Chem Geol. 2013;351:105–114. doi: 10.1016/j.chemgeo.2013.05.011
  • Mook WG. The dissolution-exchange model for dating groundwater with 14C. In: Fritz P, Fontes JC, editors. Handbook of environmental isotope geochemistry. Vol 1. Amsterdam: Elsevier; 1980. p. 55–74.
  • CETESB (São Paulo) Qualidade das águas subterrâneas no estado de São Paulo [Quality of groundwater from São Paulo state]. 2013. Cited 02 March 2020. http://www.cetesb.sp.gov.br/agua/aguassubterraneas/publicacoes-e-relatorios Portuguese.
  • Bernal JP, Cruz Jr FW, Stríkis NM et al. High-resolution Holocene South American monsoon history recorded by a speleothem from Botuverá Cave, Brazil. Earth Planet Sci Lett. 2016;450:186–196. doi: 10.1016/j.epsl.2016.06.008
  • Cruz Jr FW, Karmann I, Viana Jr O, et al. Stable isotope study of cave percolation waters in subtropical Brazil: implications for paleoclimate inferences from speleothems. Chem Geol. 2005;220:245–262. doi: 10.1016/j.chemgeo.2005.04.001
  • Lee JE, Johnson K, Fung I. Precipitation over South America during the Last Glacial Maximum: an analysis of the “amount effect” with a water isotope-enabled general circulation model. Geophys Res Lett. 2009;36(19):L19701. doi: 10.1029/2009GL039265
  • Stríkis NM, Cruz Jr FW, Cheng H, et al. Abrupt variations in South American monsoon rainfall during the Holocene based on a speleothem record from central-eastern Brazil. Geology. 2011;39(11):1075–1078. doi: 10.1130/G32098.1
  • Vuille M, Bradley RS, Werner M, et al. Modeling δ18O in precipitation over the tropical Americas: 1. Interannual variability and climatic controls. J Geophys Res. 2003;108(D6):4174. doi: 10.1029/2001JD002038

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.