270
Views
6
CrossRef citations to date
0
Altmetric
Articles

Isotope fractionation of micropollutants during large-volume extraction: heads-up from a critical method evaluation for atrazine, desethylatrazine and 2,6-dichlorobenzamide at low ng/L concentrations in groundwater

, , , , , , & ORCID Icon show all
Pages 35-52 | Received 07 Nov 2019, Accepted 08 Jul 2020, Published online: 24 Sep 2020

References

  • Fenner K, Canonica S, Wackett LP, et al. Evaluating pesticide degradation in the environment: blind spots and emerging opportunities. Science. 2013;341:752–758. doi: 10.1126/science.1236281
  • Schwarzenbach RP, Escher BI, Fenner K, et al. The challenge of micropollutants in aquatic systems. Science. 2006;313:1072–1077. doi: 10.1126/science.1127291
  • Bohn T, Cocco E, Gourdol L, et al. Determination of atrazine and degradation products in Luxembourgish drinking water: origin and fate of potential endocrine-disrupting pesticides. Food Addit Contam A. 2011;28:1041–1054. doi: 10.1080/19440049.2011.580012
  • Baran N, Mouvet C, Negrel P. Hydrodynamic and geochemical constraints on pesticide concentrations in the groundwater of an agricultural catchment (Brevilles, France). Environ Pollut. 2007;148:729–738. doi: 10.1016/j.envpol.2007.01.033
  • Björklund E, Anskjær GG, Hansen M, et al. Analysis and environmental concentrations of the herbicide dichlobenil and its main metabolite 2,6-dichlorobenzamide (BAM): A review. Sci Total Environ. 2011;409:2343–2356. doi: 10.1016/j.scitotenv.2011.02.008
  • Tappe W, Groeneweg J, Jantsch B. Diffuse atrazine pollution in German aquifers. Biodegradation. 2002;13:3–10. doi: 10.1023/A:1016325527709
  • Commission Decision of 10 March 2004 concerning the non-inclusion of atrazine in Annex I to Council Directive 91/414/EEC and the withdrawal of authorisations for plant protection products containing this active substance; 2004.
  • Barbash JE, Resek EA. Pesticides in ground water: distribution, trends, and governing factors. Chelsea (MI): Ann Arbor Press; 1996.
  • Meyer AH, Penning H, Elsner M. C and N isotope fractionation suggests similar mechanisms of microbial atrazine transformation despite involvement of different enzymes (AtzA and TrzN). Environ Sci Technol. 2009;43:8079–8085. doi: 10.1021/es9013618
  • Tomlin CSD. The pesticide manual: A world compendium of pesticides. 13th ed. Hampshire: British Crop Protection Council; 2003.
  • Johnson AC, Hughes CD, Williams RJ, et al. Potential for aerobic isoproturon biodegradation and sorption in the unsaturated and saturated zones of a chalk aquifer. J Contam Hydrol. 1998;30:281–297. doi: 10.1016/S0169-7722(97)00048-X
  • Tuxen N, Tuchsen PL, Rugge K, et al. Fate of seven pesticides in an aerobic aquifer studied in column experiments. Chemosphere. 2000;41:1485–1494. doi: 10.1016/S0045-6535(99)00533-0
  • van der Pas LJT, Leistra M, Boesten J. Rate of transformation of atrazine and bentazone in water-saturated sandy subsoils. J Pestic Sci. 1998;53:223–232. doi: 10.1002/(SICI)1096-9063(199807)53:3<223::AID-PS767>3.0.CO;2-7
  • Farlin J, Drouet L, Gallé T, et al. Delineating spring recharge areas in a fractured sandstone aquifer (Luxembourg) based on pesticide mass balance. Hydrogeol J. 2013;21:799–812. doi: 10.1007/s10040-013-0964-5
  • Farlin J, Gallé T, Bayerle M, et al. Using the long-term memory effect of pesticide and metabolite soil residues to estimate field degradation half-life and test leaching predictions. Geoderma. 2013;207–208:15–24. doi: 10.1016/j.geoderma.2013.04.028
  • Adams CD, Thurmann EM. Formation and transport of deethylatrazine in the soil and vadose zone. J Environ Qual. 1991;20:540–547. doi: 10.2134/jeq1991.00472425002000030007x
  • Auersperger P, Lah K, Kus J, et al. High precision procedure for determination of selected herbicides and their degradation products in drinking water by solid-phase extraction and gas chromatography-mass spectrometry. J Chromatogr A. 2005;1088:234–241. doi: 10.1016/j.chroma.2005.04.100
  • Törnquist M, Kreuger J, Adielsson S. Occuring of pesticides in Swedish water resources against a background of national risk-reduction programms – results from 20 years of monitoring; Piacenza (Italy): XIII Symposium Pesticide Chemistry – Environmental Fate and Human Health; 2007.
  • Porazzi E, Pardo Martinez M, Fanelli R, et al. GC-MS analysis of dichlobenil and its metabolites in groundwater. Talanta. 2005;68:146–154. doi: 10.1016/j.talanta.2005.04.044
  • Schipper PNM, Vissers MJM, van der Linden AMA. Pesticides in groundwater and drinking water wells: overview of the situation in the Netherlands. Water Sci Technol. 2008;57:1277–1286. doi: 10.2166/wst.2008.255
  • Commission Decision of 18 September 2008 concerning the non-inclusion of dichlobenil in Annex I to Council Directive 91/414/EEC and the withdrawal of authorisations for plant protection products containing that substance; 2008.
  • Reinnicke S, Simonsen A, Sørensen SR, et al. C and N isotope fractionation during biodegradation of the pesticide metabolite 2,6-dichlorobenzamide (BAM): potential for environmental assessments. Environ Sci Technol. 2012;46:1447–1454. doi: 10.1021/es203660g
  • Farlin J, Bayerle M, Pittois D, et al. Estimating pesticide attenuation from water dating and the ratio of metabolite to parent compound. Groundwater. 2017;55:550–557. doi: 10.1111/gwat.12499
  • Spalding RF, Snow DD, Cassada DA, et al. Study of pesticide occurence in two closely spaced lakes in northeastern Nebraska. J Environ Qual. 1994;23:571–578. doi: 10.2134/jeq1994.00472425002300030024x
  • Meyer AH, Elsner M. 13C/12C and 15N/14N isotope analysis to characterize degradation of atrazine: evidence from parent and daughter compound values. Environ Sci Technol. 2013;47:6884–6891. doi: 10.1021/es305242q
  • Elsner M, Jochmann MA, Hofstetter TB, et al. Current challenges in compound-specific stable isotope analysis of environmental organic contaminants. Anal Bioanal Chem. 2012;403:2471–2491. doi: 10.1007/s00216-011-5683-y
  • Schreglmann K, Hoeche M, Steinbeiss S, et al. Carbon and nitrogen isotope analysis of atrazine and desethylatrazine at sub-microgram per liter concentrations in groundwater. Anal Bioanal Chem. 2013;405:2857–2867. doi: 10.1007/s00216-012-6616-0
  • Torrentó C, Bakkour R, Gaétan G, et al. Solid-phase extraction method for stable isotope analysis of pesticides from large volume environmental water samples. Analyst. 2019;144:2898–2908. doi: 10.1039/C9AN00160C
  • Dörfler U, Feicht EA, Scheunert I. S-triazine residues in groundwater. Chemosphere. 1997;35:99–106. doi: 10.1016/S0045-6535(97)00142-2
  • Farlin J, Gallé T, Bayerle M, et al. Predicting pesticide attenuation in a fractured aquifer using lumped-parameter models. Groundwater. 2013;51:276–285.
  • Farlin J, Maloszewski P. On the use of spring baseflow recession for a more accurate parameterization of aquifer transit time distribution functions. Hydrol Earth Syst Sci. 2013;17:1825–1831. doi: 10.5194/hess-17-1825-2013
  • Meyer AH, Penning H, Lowag H, et al. Precise and accurate compound specific carbon and nitrogen isotope analysis of atrazine: critical role of combustion oven conditions. Environ Sci Technol. 2008;42:7757–7763. doi: 10.1021/es800534h
  • Werner RA, Brand WA. Referencing strategies and techniques in stable isotope ratio analysis. Rapid Commun Mass Spectrom. 2001;15:501–519. doi: 10.1002/rcm.258
  • Olness A, Basta NT, Rinke J. Redox effects on resin extraction of herbicides from soil. Talanta. 2002;57:383–391. doi: 10.1016/S0039-9140(02)00036-X
  • Carabias-Martinez R, Rodriguez-Gonzalo E, Herrero-Hernandez E, et al. Determination of herbicides and metabolites by solid-phase extraction and liquid chromatography evaluation of pollution due to herbicides in surface and groundwaters. J Chromatogr A. 2002;950:157–166. doi: 10.1016/S0021-9673(01)01613-2
  • Turiel E, Fernández P, Pérez-Conde C, et al. Trace-level determination of triazines and several degradation products in environmental waters by disk solid-phase extraction and micellar electrokinetic chromatography. J Chromatogr A. 2000;872:299–307. doi: 10.1016/S0021-9673(99)01298-4
  • Hogendoorn E, van Zoonen P. Recent and future developments of liquid chromatography in pesticide trace analysis. J Chromatogr A. 2000;892:435–453. doi: 10.1016/S0021-9673(00)00151-5
  • Prosen H, Zupančič-Kralj L. The interaction of triazine herbicides with humic acids. Chromatographia. 2000;51:S155–S164. doi: 10.1007/BF02492799
  • Wang Z, Gamble DS, Langford CH. Interaction of atrazine with Laurentian humic acid. Anal Chim Acta. 1991;244:135–143. doi: 10.1016/S0003-2670(00)82489-7
  • Wang X, Guo X, Yang Y, et al. Sorption mechanisms of phenanthrene, lindane, and atrazine with various humic acid fractions from a single soil sample. Environ Sci Technol. 2011;45:2124–2130. doi: 10.1021/es102468z
  • Sposito G, Martin-Neto L, Yang A. Atrazine complexation by soil humic acids. J Environ Qual. 1996;25:1203–1209. doi: 10.2134/jeq1996.00472425002500060005x
  • Tosheva Z, Kies A, Hofmann H. Radon in potable waters in Luxembourg. Nukleonika. 2010;55(4):583–588.
  • Umsetzung der europäischen Wasserrahmenrichtlinie (2000/60/EG) – Bericht zur Bestandsaufnahme für Luxemburg. In: Infrastructures MdDded, editor. Esch-sur-Alzette: Le Gouvernement Du Grand-Duché de Luxembourg; 2014. p. 193.
  • Bakkour R, Bolotin J, Sellergren B, et al. Molecularly imprinted polymers for compound-specific isotope analysis of polar organic micropollutants in aquatic environments. Anal Chem. 2018;90:7292–7301. doi: 10.1021/acs.analchem.8b00493
  • Subramanian G, editor. Quality assurance in environmental monitoring: Instrumental methods. Weinheim: Wiley-VCH; 1995.
  • Annable WK, Frape SK, Shouakar-Stash O, et al. 37Cl, 15n, 13C isotopic analysis of common agro-chemicals for identifying non-point source agricultural contaminants. Appl Geochem. 2007;22:1530–1536. doi: 10.1016/j.apgeochem.2007.03.049
  • Hartenbach AE, Hofstetter TB, Tentscher PR, et al. Carbon, hydrogen, and nitrogen isotope fractionation during light-induced transformations of atrazine. Environ Sci Technol. 2008;42:7751–7756. doi: 10.1021/es800356h
  • Grundwasserökologie HZM-If. Carbon and nitrogen isotope analysis of commercially available atrazine in-house standards over the last two decades. In-house database.
  • Lihl C, Heckel B, Grzybkowska A, et al. Compound-specific chlorine isotope fractionation in biodegradation of atrazine. Environ Sci Process Impacts. 2020;22:792–801. doi: 10.1039/C9EM00503J
  • Kueseng P, Noir ML, Mattiasson B, et al. Molecularly imprinted polymer for analysis of trace atrazine herbicide in water. J Environ Sci Health B. 2009;44:772–780. doi: 10.1080/03601230903238319
  • Turiel E, Martín-Esteban A, Fernández P, et al. Molecular recognition in a propazine-imprinted polymer and its application to the determination of triazines in environmental samples. Anal Chem. 2001;73:5133–5141. doi: 10.1021/ac0105538
  • Tobias HJ, Sacks GL, Zhang Y, et al. Comprehensive two-dimensional gas chromatography combustion isotope ratio mass spectrometry. Anal Chem. 2008;80:8613–8621. doi: 10.1021/ac801511d

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.